scholarly journals Fatigue fracture assessment of high strength steel using thermographic analysis

2017 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Marnick Somers ◽  
Saosometh Chhith ◽  
Wim De Waele ◽  
Reza Hojjati Talemi

Fatigue behaviour is most commonly evaluated in uni-axial cyclic stress tests using standardised dog-bone samples. When components are sharply bent into shape and subjected to cyclic loading, the fatigue damage will accumulate at the inside of the bend. This paper reports on an experimental investigation about the feasibility of infrared thermographic techniques to monitor fatigue damage initiation and accumulation. By monitoring spectral components of the thermal response, the fatigue limit, the onset of crack initiation and the ratio of initiation to propagation lifetime can all be determined. Also the effect of surface treatments on initiation properties is investigated. Most results are consistent with expected behaviour based on a previous study, indicating that thermographic techniques have a greater sensitivity and can be used to reduce the number of samples and time required for fatigue characterisation.

1974 ◽  
Vol 188 (1) ◽  
pp. 321-328 ◽  
Author(s):  
W. J. Evans ◽  
G. P. Tilly

The low-cycle fatigue characteristics of an 11 per cent chromium steel, two nickel alloys and two titanium alloys have been studied in the range 20° to 500°C. For repeated-tension stress tests on all the materials, there was a sharp break in the stress-endurance curve between 103 and 104 cycles. The high stress failures were attributed to cyclic creep contributing to the development of internal cavities. At lower stresses, failures occurred through the growth of fatigue cracks initiated at the material surface. The whole fatigue curve could be represented by an expression developed from linear damage assumptions. Data for different temperatures and types of stress concentration were correlated by expressing stress as a fraction of the static strength. Repeated-tensile strain cycling data were represented on a stress-endurance diagram and it was shown that they correlated with push-pull stress cycles at high stresses and repeated-tension at low stresses. In general, the compressive phase tended to accentuate cyclic creep so that ductile failures occurred at proportionally lower stresses. Changes in frequency from 1 to 100 cycle/min were shown to have no significant effect on low-cycle fatigue behaviour.


2008 ◽  
Vol 141-143 ◽  
pp. 237-242 ◽  
Author(s):  
Mario Rosso ◽  
Ildiko Peter ◽  
R. Villa

The correlation between the evaluation of the mechanical and of the fatigue behaviour of the rheocast, T5 and T6 heat treated SSM A356 aluminium alloy with respect to the microstructures of the component has been investigated. The study has been carried out on a suspension arm injected in a rheocasting 800 tons plant in Stampal S.p.A. The new rheocasting is a process that allows obtaining the alloys in a semisolid state directly from the liquid state, by controlled cooling of the molten alloys. The resulting microstructures are very fine, free from defects and homogeneous: these characteristics improve the mechanical properties of the alloys and specially the response to cyclic stress, an important issue for a suspension component. After a preliminary tensile test analysis, axial high frequency fatigue tests have been carried out at room temperature on specimen cut out from the suspension arm to determine the Wöhler curve and the number of cycles to failure. The results of this work allow a comparison of the effects of heat treatment process, T5 or T6, on Semi-Solid components for industrial applications in the automotive field. On the basis of these analysis the correlation between microstructure and mechanical performances can be established.


2011 ◽  
Vol 82 ◽  
pp. 154-159 ◽  
Author(s):  
Anatoly M. Bragov ◽  
Ezio Cadoni ◽  
Alexandr Yu. Konstantinov ◽  
Andrey K. Lomunov

In this paper is described the mechanical characterization at high strain rate of the high strength steel usually adopted for strands. The experimental set-up used for high strain rates testing: in tension and compression was the Split Hopkinson Pressure Bar installed in the Laboratory of Dynamic Investigation of Materials in Nizhny Novgorod. The high strain rate data in tension was obtained with dog-bone shaped specimens of 3mm in diameter and 5mm of gauge length. The specimens were screwed between incident and transmitter bars. The specimens used in compression was a cylinder of 3mm in diameter and 5mm in length. The enhancement of the mechanical properties is quite limited compared the usual reinforcing steels.


Author(s):  
Thomas Christiner ◽  
Johannes Reiser ◽  
István Gódor ◽  
Wilfried Eichlseder ◽  
Franz Trieb ◽  
...  

In many assemblies of moving components, contact problems under various lubrication conditions are lifetime-limiting. There, relative motion of contacting bodies, combined with high loads transmitted via the contact surface lead to fretting fatigue failure. For a reliable prediction of in service performance load type, different damage and failure mechanisms that may be activated during operation have to be known. In this contribution selected results of a currently conducted research project are presented. The aim of this study was to examine the material behaviour of a surface stressed steel. The influence of the fretting regime on fatigue properties has been investigated.


2014 ◽  
Vol 60 ◽  
pp. 90-100 ◽  
Author(s):  
S. Schmid ◽  
M. Hahn ◽  
S. Issler ◽  
M. Bacher-Hoechst ◽  
Y. Furuya ◽  
...  

2000 ◽  
Author(s):  
K. M. Zhao ◽  
J. K. Lee

Abstract The main objective of this paper is to generate cyclic stress-strain curves for sheet metals so that the springback can be simulated accurately. Material parameters are identified by an inverse method within a selected constitutive model that represents the hardening behavior of materials subjected to a cyclic loading. Three-point bending tests are conducted on sheet steels (mild steel and high strength steel). Punch stroke, punch load, bending strain and bending angle are measured directly during the tests. Bending moments are then computed from these measured data. Bending moments are also calculated based on a constitutive model. Normal anisotropy and nonlinear isotropic/kinematic hardening are considered. Material parameters are identified by minimizing the normalized error between two bending moments. Micro genetic algorithm is used in the optimization procedure. Stress-strain curves are generated with the material parameters found in this way, which can be used with other plastic models.


2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


Sign in / Sign up

Export Citation Format

Share Document