scholarly journals Targeting Fibroblast Growth Factor Receptor (FGFR) and Phosphoinositide 3-kinase (PI3K) Signaling Pathways in Medulloblastoma Cell Lines

2019 ◽  
Vol 40 (1) ◽  
pp. 53-66 ◽  
Author(s):  
STEFAN HOLZHAUSER ◽  
MONIKA LUKOSEVICIUTE ◽  
TEODORA ANDONOVA ◽  
RAMONA G. URSU ◽  
TINA DALIANIS ◽  
...  
2000 ◽  
Vol 113 (4) ◽  
pp. 643-651 ◽  
Author(s):  
M.J. Cross ◽  
M.N. Hodgkin ◽  
S. Roberts ◽  
E. Landgren ◽  
M.J. Wakelam ◽  
...  

Fibroblast growth factor-mediated signalling was studied in porcine aortic endothelial cells expressing either wild-type fibroblast growth factor receptor-1 or a mutant receptor (Y766F) unable to bind phospholipase C-(γ). Stimulation of cells expressing the wild-type receptor resulted in activation of phospholipases C, D and A(2) and increased phosphoinositide 3-kinase activity. Stimulation of the wild-type receptor also resulted in stress fibre formation and a cellular shape change. Cells expressing the Y766F mutant receptor failed to stimulate phospholipase C, D and A(2) as well as phosphoinositide 3-kinase. Furthermore, no stress fibre formation or shape change was observed. Both the wild-type and Y766F receptor mutant activated MAP kinase and elicited proliferative responses in the porcine aortic endothelial cells. Thus, fibroblast growth factor receptor-1 mediated activation of phospholipases C, D and A(2) and phosphoinositide 3-kinase was dependent on tyrosine 766. Furthermore, whilst tyrosine 766 was not required for a proliferative response, it was required for fibroblast growth factor receptor-1 mediated cytoskeletal reorganisation.


2001 ◽  
Vol 12 (4) ◽  
pp. 931-942 ◽  
Author(s):  
Kristen C. Hart ◽  
Scott C. Robertson ◽  
Daniel J. Donoghue

Fibroblast growth factor receptor 3 (FGFR3) mutations are frequently involved in human developmental disorders and cancer. Activation of FGFR3, through mutation or ligand stimulation, results in autophosphorylation of multiple tyrosine residues within the intracellular domain. To assess the importance of the six conserved tyrosine residues within the intracellular domain of FGFR3 for signaling, derivatives were constructed containing an N-terminal myristylation signal for plasma membrane localization and a point mutation (K650E) that confers constitutive kinase activation. A derivative containing all conserved tyrosine residues stimulates cellular transformation and activation of several FGFR3 signaling pathways. Substitution of all nonactivation loop tyrosine residues with phenylalanine rendered this FGFR3 construct inactive, despite the presence of the activating K650E mutation. Addition of a single tyrosine residue, Y724, restored its ability to stimulate cellular transformation, phosphatidylinositol 3-kinase activation, and phosphorylation of Shp2, MAPK, Stat1, and Stat3. These results demonstrate a critical role for Y724 in the activation of multiple signaling pathways by constitutively activated mutants of FGFR3.


Sign in / Sign up

Export Citation Format

Share Document