scholarly journals Подавление волноводной рекомбинации за счет использования парных асимметричных барьеров в лазерных гетероструктурах

Author(s):  
Ф.И. Зубов ◽  
М.В. Максимов ◽  
Н.Ю. Гордеев ◽  
Ю.С. Полубавкина ◽  
А.Е. Жуков

AbstractA semiconductor-laser design is proposed in which parasitic recombination in the waveguide region is suppressed by means of double asymmetric barriers adjacent to the active region. Double asymmetric barriers block the undesirable transport of one type of charge carrier while allowing the transport of the other type of carrier. The spacer in the double asymmetric barrier can serve to compensate the elastic strain introduced by the barrier layers as well as to control the energy spectrum of charge carriers and, thus, the transmission coefficient. By the example of a laser with Al_0.2Ga_0.8As waveguide layers, it is shown that the design with double asymmetric barriers makes it possible to suppress undesirable electron transport by a factor of 4 in comparison to the design using single asymmetric barriers.

2003 ◽  
Vol 771 ◽  
Author(s):  
Hiroaki Iino ◽  
Jun-Ichi Hanna

AbstractWe have investigated the charge carrier lifetimes for electrons and holes in smectic mesophases of a 2-phenylnaphthalene derivative, 6-(4'-octylphenyl)-2-dodecyloxynaphthalene (8-PNP-O12) by time-of-flight (TOF) measurement. For the negative charge carriers, we found two transits in different time range, which are attributed to electronic and ionic conduction. With the aid of liquid-like fluidity of the material, we could prepare very thick samples over 500μm, and it enables us to determine the carrier lifetimes, which are governed by different regimes: the hole lifetime is governed by recombination of charge carriers and estimated to be 10-2 sec; on the other hand, the electron lifetime is dominated by trapping at deep states and estimated to be on the order of 10-5 sec for both SmA and SmB phases.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Gary Zaiats ◽  
Shingo Ikeda ◽  
Prashant V. Kamat

AbstractQuantum dot light-emitting devices have emerged as an important technology for display applications. Their emission is a result of recombination between positive and negative charge carriers that are transported through the hole and electron conductive layers, respectively. The selection of electron or hole transport materials in these devices not only demands the alignment of energy levels between the layers but also balances the flow of electrons and holes toward the recombination sites. In this work, we examine a method for device optimization through control of the charge carrier kinetics. We employ impedance spectroscopy to examine the mobility of charge carriers through each of the layers. The derived mobility values provide a path to estimate the transition time of each charge carrier toward the emitting layer. We suggest that an optimal device structure can be obtained when the transition times of both charge carriers toward the active layer are similar. Finally, we examine our hypothesis by focusing on thickness optimization of the electron transport layer.


Author(s):  
M. M. Glazov

In this chapter, some prospects in the field of electron and nuclear spin dynamics are outlined. Particular emphasis is put ona situation where the hyperfine interaction is so strong that it leads to a qualitative rearrangement of the energy spectrum resulting in the coherent excitation transfer between the electron and nucleus. The strong coupling between the spin of the charge carrier and of the nucleus is realized, for example in the case of deep impurity centers in semiconductors or in isotopically purified systems. We also discuss the effect of the nuclear spin polaron, that is ordered state, formation at low enough temperatures of nuclear spins, where the orientation of the carrier spin results in alignment of the spins of nucleus interacting with the electron or hole.


Author(s):  
Zirong Shen ◽  
Junmin Huang ◽  
Junying Chen ◽  
Yingwei Li

Low charge carrier mobility limits the development of highly efficient semiconductor-based photocatalysis. Heterointerface engineering is a promising approach to spatially separate the photoexcited charge carriers and thus enhance photocatalytic activity....


2019 ◽  
Vol 1 (11) ◽  
pp. 2334-2341
Author(s):  
Yanyan Wang ◽  
Ziyang Hu ◽  
Can Gao ◽  
Cheng Yang ◽  
Houcheng Zhang ◽  
...  

2019 ◽  
Vol 34 (31) ◽  
pp. 1950196
Author(s):  
J. Sadeghi ◽  
M. R. Alipour

In this paper, we consider Klein–Gordon particle near Reissner–Nordström black hole. The symmetry of such a background led us to compare the corresponding Laplace equation with the generalized Heun functions. Such relations help us achieve the generalized [Formula: see text] algebra and some suitable results for describing the above-mentioned symmetry. On the other hand, in case of [Formula: see text], which is near the proximity black hole, we obtain the energy spectrum. When we compare the equation of RN background with Laguerre differential equation, we show that the obtained energy spectrum is same as the three-dimensional harmonic oscillator. So, finally we take advantage of harmonic oscillator energy and make suitable partition function. Such function help us to obtain all thermodynamical properties of black hole. Also, the structure of obtained entropy lead us to have some bit and information theory in the RN black hole.


2020 ◽  
Vol 35 (31) ◽  
pp. 2050255
Author(s):  
D. Ojeda-Guillén ◽  
R. D. Mota ◽  
M. Salazar-Ramírez ◽  
V. D. Granados

We extend the (1 + 1)-dimensional Dirac–Moshinsky oscillator by changing the standard derivative by the Dunkl derivative. We demonstrate in a general way that for the Dirac–Dunkl oscillator be parity invariant, one of the spinor component must be even, and the other spinor component must be odd, and vice versa. We decouple the differential equations for each of the spinor component and introduce an appropriate su(1, 1) algebraic realization for the cases when one of these functions is even and the other function is odd. The eigenfunctions and the energy spectrum are obtained by using the su(1, 1) irreducible representation theory. Finally, by setting the Dunkl parameter to vanish, we show that our results reduce to those of the standard Dirac-Moshinsky oscillator.


2015 ◽  
Vol 51 (96) ◽  
pp. 17128-17131 ◽  
Author(s):  
B. Limburg ◽  
E. Bouwman ◽  
S. Bonnet

Unidirectional photocatalytic electron transfer from a hydrophilic electron donor encapsulated in the interior of a liposome, to a hydrophilic electron acceptor on the other side of the membrane, has been achieved using the simple membrane-soluble electron relay 1-methoxy-N-methylphenazinium (MMP+).


Sign in / Sign up

Export Citation Format

Share Document