scholarly journals Исследование структурных и люминесцентных свойств гетероструктур InAs/GaAs с легированными Bi потенциальными барьерами

Author(s):  
А.С. Пащенко ◽  
Л.С. Лунин ◽  
С.Н. Чеботарев ◽  
М.Л. Лунина

AbstractThe influence of Bi in GaAs barrier layers on the structural and optical properties of InAs/GaAs quantum-dot heterostructures is studied. By atomic-force microscopy and Raman spectroscopy, it is established that the introduction of Bi into GaAs to a content of up to 5 at % results in a decrease in the density of InAs quantum dots from 1.58 × 10^10 to 0.93 × 10^10 cm^–2. The effect is defined by a decrease in the mismatch between the crystal-lattice parameters at the InAs/GaAsBi heterointerface. In this case, an increase in the height of InAs quantum dots is detected. This increase is apparently due to intensification of the surface diffusion of In during growth at the GaAsBi surface. Analysis of the luminescence properties shows that the doping of GaAs potential barriers with Bi is accompanied by a red shift of the emission peak related to InAs quantum dots and by a decrease in the width of this peak.

2000 ◽  
Vol 618 ◽  
Author(s):  
Kwang Moo Kim ◽  
Young Ju Park ◽  
Young Min Park ◽  
Jong Bum Nah ◽  
Chan Kyeong Hyon ◽  
...  

ABSTRACTWe fabricated InAs self-assembled quantum dots (QDs) on strained layer using molecular beam epitaxy. The strained layer consisted of InAs/GaAs superlattice(SL) and GaAs barrier layer on (001) GaAs substrate. Through controlling thickness of the strained layer, we formed two-dimensional alignments of QDs on misfit dislocation arrays along <110> directions made by strained layer. The increase of the strained layer thickness resulted in a stronger alignment of QDs, which were observed by atomic force microscopy studies. The aligned QDs were confirmed to confine carriers well and have different size distributions by photoluminescence measurement.


2005 ◽  
Vol 277-279 ◽  
pp. 1023-1028
Author(s):  
Sung Ho Hwang ◽  
Jung Il Lee ◽  
Jin Dong Song ◽  
Won Jun Choi ◽  
Il Ki Han ◽  
...  

We report effects of the size and the energy state distribution on the electrical and optical properties in self-assembled InAs quantum dots. The results of characteristics measured using atomic force microscopy, photoluminescence and dark current are analyzed by way of a simulation assuming a Gaussian distribution in size and related energies. The samples investigated in this study are InAs/GaAs quantum dot infrared photodetector structures with an AlGaAs blocking layer grown by molecular beam epitaxy at different growth modes.


2003 ◽  
Vol 794 ◽  
Author(s):  
V. Celibert ◽  
B. Salem ◽  
G. Guillot ◽  
C. Bru-Chevallier ◽  
L. Grenouillet ◽  
...  

ABSTRACTSelf-organized InAs quantum dots (QDs) were grown in the Stranski-Krastanov regime, by gas-source molecular beam epitaxy (GSMBE), on (100) GaAs substrates. Two important parameters have been optimized in order to grow high quality QDs with a very good reproducibility: InAs growth rate and GaAs cap layer deposition rate. Atomic force microscopy (AFM) analysis shows a unimodal QD distribution and the room temperature photoluminescence (RTPL) spectrum of the optimized sample reveals a 1.3 μm emission with a 19 meV full width at half maximum (FWHM). Photoluminescence (PL) measurements versus excitation power density and photoluminescence excitation (PLE) measurements clearly show multi-component PL emission from transitions associated with fundamental and related excited states of QDs. Furthermore a good growth reproducibility is observed. The results are promising for further work which will lead to laser fabrication.


2002 ◽  
Vol 28 (2) ◽  
pp. 139-141
Author(s):  
V. P. Evtikhiev ◽  
O. V. Konstantinov ◽  
E. Yu. Kotel’nikov ◽  
A. V. Matveentsev ◽  
A. N. Titkov ◽  
...  

2001 ◽  
Vol 676 ◽  
Author(s):  
J. C. González ◽  
M. I. N. da Silva ◽  
W. N. Rodrigues ◽  
F. M. Matinaga ◽  
R. Magalhaes-Paniago ◽  
...  

ABSTRACTIn this work, we report optical and structural properties of vertical aligned self-assembled InAs quantum dots multilayers. The InAs quantum dots samples were grown by Molecular Beam Epitaxy. Employing Atomic Force Microscopy, Transmission Electron Microscopy, and Gracing Incident X-ray Diffraction we have studied the structural properties of samples with different number of periods of the multiplayer structure, as well as different InAs coverage. The optical properties were studied using Photoluminescence spectroscopy.


2003 ◽  
Vol 799 ◽  
Author(s):  
V. Celibert ◽  
B. Salem ◽  
G. Guillot ◽  
C. Bru-Chevallier ◽  
L. Grenouillet ◽  
...  

ABSTRACTSelf-organized InAs quantum dots (QDs) were grown in the Stranski-Krastanov regime, by gas-source molecular beam epitaxy (GSMBE), on (100) GaAs substrates. Two important parameters have been optimized in order to grow high quality QDs with a very good reproducibility: InAs growth rate and GaAs cap layer deposition rate. Atomic force microscopy (AFM) analysis shows a unimodal QD distribution and the room temperature photoluminescence (RTPL) spectrum of the optimized sample reveals a 1.3 μm emission with a 19 meV full width at half maximum (FWHM). Photoluminescence (PL) measurements versus excitation power density and photoluminescence excitation (PLE) measurements clearly show multi-component PL emission from transitions associated with fundamental and related excited states of QDs. Furthermore a good growth reproducibility is observed. The results are promising for further work which will lead to laser fabrication.


Sign in / Sign up

Export Citation Format

Share Document