scholarly journals Управление свойствами спин-волнового транспорта в полукольцевом магнонном микроволноводе

2019 ◽  
Vol 89 (11) ◽  
pp. 1726
Author(s):  
В.А. Губанов ◽  
А.А. Мартышкин ◽  
С.Е. Шешукова ◽  
А.В. Садовников

AbstractSpin-wave transport along a waveguide structure with disturbed translational symmetry has been investigated. A semiring portion of a magnon microwaveguide has been made of a YIG film. It has been shown that one can control the dynamic magnetization spatial distribution by varying the magnetic biasing angle in the microwaveguide plane. Under such conditions, the transmission coefficient of standing waves changes noticeably. The structure suggested in this paper allows the rotation of spin-wave signals in an irregular configuration under the conditions of surface magnetostatic wave propagation. This effect may be used in planar magnon networks.

2014 ◽  
Vol 215 ◽  
pp. 389-393 ◽  
Author(s):  
Evgeny N. Beginin ◽  
Alexandr V. Sadovnikov ◽  
Yurii P. Sharaevsky ◽  
Sergey A. Nikitov

Brillouin light spectroscopy method of magnetic materials was used for experimental study of multimode propagation characteristics of surface magnetostatic waves in an irregular ferrite waveguide. It was experimentally demonstrated that the spatial transformation of modes is possible in tapered ferrite planar waveguide due to breaking of the axis symmetry.


2011 ◽  
Vol 8 (1) ◽  
pp. 63-71
Author(s):  
Miranda Mitrovic ◽  
Branka Jokanovic

In this paper we investigate the conditions for energy tunneling through narrow channel obtained by reducing the height of rectangular waveguide. Tunneling of the energy occurs at the frequency for which the effective dielectric permittivity of the channel becomes equal to zero, so it can be treated as an ENZ (epsilon-near-zero) metamaterial. We investigated how geometry of the channel and dielectric permittivity affect the transmission coefficient and field density in the channel. Adding slots in the channel, which are placed orthogonally to the wave propagation, we designed a small antenna with directivity of 5.44 dBi at the frequency of 3 GHz.


1976 ◽  
Vol 29 (6) ◽  
pp. 388-391 ◽  
Author(s):  
C. G. Sykes ◽  
J. D. Adam ◽  
J. H. Collins

Author(s):  
Dale Chimenti ◽  
Stanislav Rokhlin ◽  
Peter Nagy

In the previous chapters, we saw how waves in composites behaved under various circumstances, depending on material anisotropy and wave propagation direction. The most important function that describes guided wave propagation, and the plate elastic behavior on which propagation depends, is the reflection coefficient (RC) or transmission coefficient (TC). More generally, we can call either one simply, the scattering coefficient (SC). It is clear that the elastic properties of the composite are closely tied to the SC, and in turn the scattering coefficient determines the dispersion spectrum of the composite plate. Measuring the SC provides a route to the inference of the elastic properties. To measure the SC, we need only observe the reflected or transmitted ultrasonic field of the incident acoustic energy. In doing so, however, the scattered ultrasonic field is influenced by several factors, both intrinsic and extrinsic. Clearly, the scattered ultrasonic field of an incident acoustic beam falling on the plate from a surrounding or contacting fluid will be strongly influenced by the RC or TC of the plate material. The scattering coefficients are in turn dependent on the plate elastic properties and structural composition: fiber and matrix properties, fiber volume fraction, layup geometry, and perhaps other factors. These elements are not, however, the only ones to determine the amplitude and spatial distribution of energy in the scattered ultrasonic field. Extrinsic factors such as the finite transmitting and receiving transducers, their focal lengths, and their placement with respect to the sample under study can make contributions to the signal as important as the SC itself. Therefore, a systematic study of the role of the transducer is essential for a complete understanding and correct interpretation of acoustic signals in the scattered field. The interpretation of these signals leads ultimately to the inference of composite elastic properties. As we pointed out in Chapter 5, the near coincidence under some conditions of guided plate wave modes with the zeroes of the reflection coefficient (or peaks in the transmission coefficient) has been exploited many times to reveal the plate’s guided wave mode spectrum.


2020 ◽  
Vol 10 (14) ◽  
pp. 4797 ◽  
Author(s):  
Xiaolin Huang ◽  
Shengwen Qi ◽  
Bowen Zheng ◽  
Youshan Liu ◽  
Lei Xue ◽  
...  

A rock mass often contains joints filled with a viscoelastic medium of which seismic response is significant to geophysical exploration and seismic engineering design. Using the propagator matrix method, an analytical model was established to characterize the seismic response of viscoelastic filled joints. Stress wave propagation through a single joint highly depended on the water content and thickness of the filling as well as the frequency and incident angle of the incident wave. The increase in the water content enhanced the viscosity (depicted by quality factor) of the filled joint, which could promote equivalent joint stiffness and energy dissipation with double effects on stress wave propagation. There existed multiple reflections when the stress wave propagated through a set of filled joints. The dimensionless joint spacing was the main controlling factor in the seismic response of the multiple filled joints. As it increased, the transmission coefficient first increased, then it decreased instead, and at last it basically kept invariant. The effect of multiple reflections was weakened by increasing the water content, which further influenced the variation of the transmission coefficient. The water content of the joint filling should be paid more attention in practical applications.


Sign in / Sign up

Export Citation Format

Share Document