scholarly journals Особенности воздействия ионов He и Ar низких энергий на нанопористые Si/SiO-=SUB=-2-=/SUB=--материалы

Author(s):  
А.А. Сычева ◽  
Е.Н. Воронина

In this paper molecular dynamics simulations of low-energy (50–200 eV) ion irradiation of nanoporous Si/SiO2-based materials were performed. Obtained results confirm the experimentally observed the densification of the uppermost surface layers of materials with small (less than 1.5 nm) pores due to pore collapse initiated by incident ions. Special features of the irradiation of nanoporous materials with He and Ar low-energy ions and the influence of their energy on structural changes of materials under study are discussed.

2013 ◽  
Vol 781-784 ◽  
pp. 357-361 ◽  
Author(s):  
Igor V. Khromushin ◽  
Taтiana I. Aksenova ◽  
Turgora Tuseyev ◽  
Karlygash K. Munasbaeva ◽  
Yuri V. Ermolaev ◽  
...  

The effect of irradiation with heavy ions Ne, Ar, and Kr of various energies on the structure and properties of ceramic barium cerate doped with neodymium and annealed in air at 650°C for 7 hours is studied. It is noted that blistering was observed on cerate surface during its irradiation by low energy Ne ions, whereas it was not observed under low-energy Ar and Kr ions irradiation. Irradiation of the cerate with high energy ions caused partial amorphization of the irradiated surface of the material, while the structure of the non-irradiated surface did not change. In addition, the irradiated surface of the cerate endured solid-phase structural changes. Thus, upon high-energy ions irradiation in the range of Ne, Ar, Kr the cerate surface resembled the stages of spherulite formation - nucleation, growth (view of cauliflower), formation of spherulitic crust, respectively. The increase in water molecules release and reduction of molecular oxygen release from the barium cerate, irradiated by high-energy ions is found during vacuum constant rate heating. It is concluded that cerates undergo changes to the distances significantly exceeding the ion ranges in these materials. Features of high-energy ions influence on thermal desorption of carbon dioxide from cerates show, apparently, the formation of weakly bound carbonate compounds on the cerate surface in the irradiation process.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


2006 ◽  
Vol 929 ◽  
Author(s):  
Volha Abidzina ◽  
I. Tereshko ◽  
I. Elkin ◽  
R.L. Zimmerman ◽  
S. Budak ◽  
...  

ABSTRACTWe studied the effects of the low energy ions to induce nucleation of nanoscale crystals on and near surface of silica nano-layer containing low concentrations of Au. Suprasil substrates were coated with thin layer of gold followed by low-energy ion irradiation in a glow discharge plasma. The formation of nanoscale crystals due to low energy ion irradiation were then studied using RBS and optical absorption spectrometry.


1990 ◽  
Vol 193 ◽  
Author(s):  
M. V. R. Murty ◽  
H. S. Lee ◽  
Harry A. Atwater

ABSTRACTSurface and near-surface processes have been studied during low energy Xe ion bombardment of Si (001) and fcc surfaces using molecular dynamics simulations. Defect production is enhanced near the surface of smooth Si (001) surfaces with respect to the bulk in the energy range 20–150 eV, but is not confined exclusively to the surface layer. The extent and qualitative nature of bombardment-induced dissociation of small fcc islands on an otherwise smooth fcc (001) surface is found to depend strongly on island cohesive energy.


10.29007/6kp3 ◽  
2020 ◽  
Author(s):  
Renji Mukuno ◽  
Manabu Ishimaru

The structural changes of amorphous silicon (a-Si) under compressive pressure were examined by molecular-dynamics simulations using the Tersoff interatomic potential. a-Si prepared by melt-quenching methods was pressurized up to 30 GPa under different temperatures (300K and 500K). The density of a-Si increased from 2.26 to 3.24 g/cm3 with pressure, suggesting the occurrence of the low-density to high-density amorphous phase transformation. This phase transformation occurred at the lower pressure with increasing the temperature because the activation barrier for amorphous-to-amorphous phase transformation could be exceeded by thermal energy. The coordination number increased with pressure and time, and it was saturated at different values depending on the pressure. This suggested the existence of different metastable atomic configurations in a-Si. Atomic pair-distribution functions and bond-angle distribution functions suggested that the short-range ordered structure of high-density a-Si is similar to the structure of the high-pressure phase of crystalline Si (β-tin and Imma structures).


Sign in / Sign up

Export Citation Format

Share Document