scholarly journals Исследование относительной реакционной способности ароматических соединений в воздухе под действием плазмы импульсного разряда

Author(s):  
И.Е. Филатов ◽  
В.В. Уварин ◽  
Д.Л. Кузнецов

Based on the method of competing reactions, a method for determining the relative reactivity of aromatic vapors in relation to the plasma components of a pulsed corona discharge is developed. The parameters of the relative reactivity of aromatic compounds in the air and nitrogen stream were obtained using model mixtures based on benzene, toluene, and xylene with a content of 250-500 ppm. The effect of water vapor on the process is shown. The obtained data will be useful for optimizing the processes of plasma-chemical air purification from the vapors of toxic aromatic compounds.

2021 ◽  
Vol 2064 (1) ◽  
pp. 012094
Author(s):  
I E Filatov ◽  
V V Uvarin ◽  
E V Nikiforova ◽  
D L Kuznetsov

Abstract A method for determining the relative reactivity of volatile organic compounds (VOCs) with respect to the air plasma of a pulsed corona discharge is proposed. It is based on the use of specially selected mixtures of organic compounds. The approach is based on the method of competing reactions: all components of the mixture are in equal conditions, so the relative reactivity can be determined with high accuracy using the gas chromatography. The parameters of scaling processes are proposed – plasma chemical yield, relative reactivity, formal reagent as a set of plasma components. In this paper, using the example of a number of VOCs, we demonstrate the extended capabilities of the method using a special technique for processing experimental data. More accurate data on the relative reactivity of a number of VOCs of wide application have been obtained. It is proposed to use the energy yield of ozone as a criterion for the energy efficiency of a plasma chemical installation.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 549
Author(s):  
Maarja Kask ◽  
Marina Krichevskaya ◽  
Sergei Preis ◽  
Juri Bolobajev

The treatment of wastewaters containing hazardous volatile organic compounds (VOCs) requires the simultaneous treatment of both water and air. Refractory toluene, extensively studied for its removal, provides a basis for the comparison of its abatement methods. The oxidation of aqueous toluene by gas-phase pulsed corona discharge (PCD) in combination with the subsequent photocatalytic treatment of exhaust air was studied. The PCD treatment showed unequalled energy efficiencies in aqueous and gaseous toluene oxidation, reaching, respectively, up to 10.5 and 29.6 g·kW−1·h−1. The PCD exhaust air contained toluene residues and ozone in concentrations not exceeding 0.1 and 0.6 mg·L−1, respectively. As a result of the subsequent photocatalytic treatment, both airborne residues were eliminated within a contact time with TiO2 as short as 12 s. The results contribute to the possible application of the studied approach in closed-loop energy-saving ventilation systems.


Author(s):  
Iakov Kornev ◽  
Sergei Preis

AbstractWastewaters polluted with non-biodegradable volatile organic compounds (VOCs), such as aromatic substances, present a growing problem meeting no adequately affordable technological response. Low-temperature plasma generated in the gas-phase pulsed corona discharge (PCD) presents competitive advanced oxidation technology in abatement of various classes of pollutants, although the process parameters, the pulse repetition frequency and the liquid spray rate, require optimization. The experimental research into aqueous benzene oxidation with PCD was undertaken to establish the impact of the parameters to the energy efficiency. The oxidation reaction was found under the experimental conditions to mostly proceed in the gas phase showing little influence of the pulse repetition frequency and the gas-liquid contact surface. Oxidation of benzene and, presumably, other volatile pollutants in the volume of PCD reactor compartment presents an effective strategy of aqueous VOCs abatement.


2003 ◽  
Vol 42 (9) ◽  
pp. 2030-2032
Author(s):  
Joo-Youp Lee ◽  
Soon-Jai Khang ◽  
Tim C. Keener

2011 ◽  
Vol 11 (2) ◽  
pp. 238-245 ◽  
Author(s):  
Iris Panorel ◽  
Iakov Kornev ◽  
Henry Hatakka ◽  
Sergei Preis

The research into oxidation of aqueous humic substances (HS) with pulsed corona discharge (PCD) was undertaken to estimate the energy efficiency of the treatment. The PCD system consists of a voltage pulse generator and reactor, in which the gas-phase discharge generating OH radicals and ozone treats the water showered between electrodes. The influence of HS initial concentration, pulse repetition frequency, water flow rate, and the atmosphere composition was evaluated by the decrease in total organic carbon (TOC) and color. The PCD treatment reduced TOC by 40 to 50% and the color by up to 97%. The PCD energy efficiency ranged about 20 g kW−1 h−1 in air and 30 g kW−1 h−1 in oxygen for the lowest initial color of about 50 Pt-Co degrees. Ozone contributed about 30% to the color reduction and only 15% to the reduction in TOC, indicating predominant role of OH radicals in mineralization of oxidation by-products.


2001 ◽  
Vol 24 (12) ◽  
pp. 1295-1299 ◽  
Author(s):  
N. Sano ◽  
S. Nishimura ◽  
T. Kanki ◽  
H. Tamon ◽  
W. Tanthapanichakoon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document