scholarly journals Зондирование водогазонасыщенных насыпных сред переотраженными волнами непосредственно после воздействия ударной волны

Author(s):  
А.Т. Ахметов ◽  
И.К. Гималтдинов ◽  
М.А. Азаматов ◽  
А.Ф. Мухаметзянов ◽  
Д.Р. Богданов

The possibility of using re-reflected waves for sounding bulk water-gas-saturated media after exposure to a shock wave has been investigated. Results are shown using probing pulses.

2019 ◽  
Vol 18 (2-3) ◽  
pp. 279-298 ◽  
Author(s):  
Bhavraj Thethy ◽  
David Tairych ◽  
Daniel Edgington-Mitchell

Time-resolved visualisation of shock wave motion within a powered resonant tube (PRT) is presented for the regurgitant mode of operation. Shock position and velocity are measured as functions of both time and space from ultra-high-speed schlieren visualisations. The shock wave velocity is seen to vary across the resonator length for both the incident and reflected waves. Three mechanisms are explored as explanations for the variation in velocity: change in local fluid velocity, variation in shock strength and variations in local temperature. For the incident wave, local fluid velocity and shock strength are extracted from the data and both are demonstrated to contribute to the observed variation, with a non-trivial remainder likely explained by variation in temperature.


2008 ◽  
Vol 616 ◽  
pp. 43-61 ◽  
Author(s):  
J. I. ILORETA ◽  
N. M. FUNG ◽  
A. J. SZERI

In this paper we consider the dynamics of bubbles near a kidney stone subjected to a lithotripter shock wave. We address the effect of kidney stone geometry and composition on the cavitation potential near the stone in a shock wave lithotripter. The analysis is based on the previously developed work metric in which the work done on a bubble by the lithotripter shock wave (LSW) is used to determine the maximum radius the bubble achieves. Results of the reflection of the LSW from cylindrical kidney stones with proximal surfaces of varying geometry show that the presence of the stone enhances bubble growth near the stone and decreases growth further away, owing to constructive and destructive interference, respectively. These effects hold true regardless of the shape and curvature of the face, and are strongest for stones with concave faces and higher reflection coefficients. A consequence of the analysis is an elucidation of the mechanism for enhanced cavitation activity and creation of deep craters on the proximal side of a kidney stone, as have been observed in recent experiments.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Guoliang Yang ◽  
Shuai Feng ◽  
Wenjia Huang

Corrugated-board explosion-proof wall is the main means to prevent explosion shock wave damage, and it is important to study the effect of different corrugated plates on the shock wave. Using a high-speed schlieren experimental system and an air overpressure test system, the wave-blocking characteristics of different forms of corrugated plates are comprehensively studied. The schlieren images were used to analyze the influence that the corrugation shape of a corrugated plate has on the shock wave propagation characteristics. The results show that the reflection process of the triangular-, trapezoidal-, and half-cylindrical-shaped corrugated plates exhibit differences. The number of reflected waves from the triangular corrugated plate is much greater than that from the other corrugated plates, and it will consume more energy. The diffraction wave-front velocity has a trend of initially decreasing and then increasing and is also reduced by different degrees by the reflection. Comparative analysis of the schlieren images and the air shock wave overpressure test shows that plates corrugated with different corrugation shapes decrease the diffraction overpressure peak and exhibit a hysteresis.


1984 ◽  
Vol 51 (3) ◽  
pp. 586-594 ◽  
Author(s):  
Yongchi Li ◽  
T. C. T. Ting

The reflection of an oblique plane shock wave from a boundary in a two-dimensional isotropic hyperelastic material is studied. For plane strain deformations, the strain energy function W is a function of two invariants p and q of the deformation gradient. There are, in general, two reflected waves each of which can be a simple wave or a shock wave. For a special class of materials for which the strain energy function W(p, q) represents a developable surface (of which harmonic materials are particular examples), one of the reflected waves is always a shock wave. It is shown that there are materials other than harmonic materials for which the wave speeds are independent of the direction of propagation. Illustrative examples are presented to show how one can determine the reflected waves from a rigid boundary. It is also shown that for certain incident shock waves, there exists only one reflected wave.


2009 ◽  
Vol 641 ◽  
pp. 297-333 ◽  
Author(s):  
C. BOND ◽  
D. J. HILL ◽  
D. I. MEIRON ◽  
P. E. DIMOTAKIS

The behaviour of an initially planar shock wave propagating into a linearly convergent wedge is investigated experimentally and numerically. In the experiment, a 25° internal wedge is mounted asymmetrically in a pressure-driven shock tube. Shock waves with incident Mach numbers in the ranges of 1.4–1.6 and 2.4–2.6 are generated in nitrogen and carbon dioxide. During each run, the full pressure history is recorded at fourteen locations along the wedge faces and schlieren images are produced. Numerical simulations performed based on the compressible Euler equations are validated against the experiment. The simulations are then used as an additional tool in the investigation.The linearly convergent geometry strengthens the incoming shock repeatedly, as waves reflected from the wedge faces cross the interior of the wedge. This investigation shows that aspects of this structure persist through multiple reflections and influence the nature of the shock-wave focusing. The shock focusing resulting from the distributed reflected waves of the Mach 1.5 case is distinctly different from the stepwise focusing at the higher incoming shock Mach number. Further experiments using CO2 instead of N2 elucidate some relevant real-gas effects and suggest that the presence or absence of a weak leading shock on the distributed reflections is not a controlling factor for focusing.


Author(s):  
R. Sharma ◽  
B.L. Ramakrishna ◽  
N.N. Thadhani ◽  
D. Hianes ◽  
Z. Iqbal

After materials with superconducting temperatures higher than liquid nitrogen have been prepared, more emphasis has been on increasing the current densities (Jc) of high Tc superconductors than finding new materials with higher transition temperatures. Different processing techniques i.e thin films, shock wave processing, neutron radiation etc. have been applied in order to increase Jc. Microstructural studies of compounds thus prepared have shown either a decrease in gram boundaries that act as weak-links or increase in defect structure that act as flux-pinning centers. We have studied shock wave synthesized Tl-Ba-Cu-O and shock wave processed Y-123 superconductors with somewhat different properties compared to those prepared by solid-state reaction. Here we report the defect structures observed in the shock-processed Y-124 superconductors.


Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

The action of water and the electron beam on organic specimens in the electron microscope results in the removal of oxidizable material (primarily hydrogen and carbon) by reactions similar to the water gas reaction .which has the form:The energy required to force the reaction to the right is supplied by the interaction of the electron beam with the specimen.The mass of water striking the specimen is given by:where u = gH2O/cm2 sec, PH2O = partial pressure of water in Torr, & T = absolute temperature of the gas phase. If it is assumed that mass is removed from the specimen by a reaction approximated by (1) and that the specimen is uniformly thinned by the reaction, then the thinning rate in A/ min iswhere x = thickness of the specimen in A, t = time in minutes, & E = efficiency (the fraction of the water striking the specimen which reacts with it).


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Author(s):  
Kenneth S. Vecchio

Shock-induced reactions (or shock synthesis) have been studied since the 1960’s but are still poorly understood, partly due to the fact that the reaction kinetics are very fast making experimental analysis of the reaction difficult. Shock synthesis is closely related to combustion synthesis, and occurs in the same systems that undergo exothermic gasless combustion reactions. The thermite reaction (Fe2O3 + 2Al -> 2Fe + Al2O3) is prototypical of this class of reactions. The effects of shock-wave passage through porous (powder) materials are complex, because intense and non-uniform plastic deformation is coupled with the shock-wave effects. Thus, the particle interiors experience primarily the effects of shock waves, while the surfaces undergo intense plastic deformation which can often result in interfacial melting. Shock synthesis of compounds from powders is triggered by the extraordinarily high energy deposition rate at the surfaces of the powders, forcing them in close contact, activating them by introducing defects, and heating them close to or even above their melting temperatures.


Sign in / Sign up

Export Citation Format

Share Document