DECAY OF BUOYANT SMOKE LAYER TEMPERATURE ALONG THE LONGITUDINAL DIRECTION IN TUNNEL FIRES

2004 ◽  
Vol 13 (1) ◽  
pp. 53-77 ◽  
Author(s):  
L. H. HU ◽  
R. HUO ◽  
W. K. CHOW ◽  
H. B. WANG ◽  
R. X. YANG
2020 ◽  
Vol 12 (5) ◽  
pp. 1817
Author(s):  
Lihua Zhai ◽  
Zhongxing Nong ◽  
Guanhong He ◽  
Baochao Xie ◽  
Zhisheng Xu ◽  
...  

Many pollutants are generated during tunnel fires, such as smoke and toxic gases. How to control the smoke generated by tunnel fires was focused on in this paper. A series of experiments were carried out in a 1:10 model tunnel with dimensions of 6.0 m × 1.0 m × 0.7 m. The purpose was to investigate the smoke layer thickness and the heat exhaust coefficient of the tunnel mechanical smoke exhaust mode under longitudinal wind. Ethanol was employed as fuel, and the heat release rates were set to be 10.6 kW, 18.6 kW, and 31.9 kW. The exhaust velocity was 0.32–3.16 m/s, and the longitudinal velocity was 0–0.47 m/s. The temperature profile in the tunnel was measured, and the buoyant flow stratification regime was visualized by a laser sheet. The results showed that the longitudinal ventilation leads to a secondary stratification of the smoke flow. In the ceiling extract tunnel under longitudinal ventilation, considering the research results of the smoke layer height and the heat exhaust coefficient, a better scheme for fire-producing pollutants was that an exhaust velocity of 1.26–2.21 m/s (corresponding to the actual velocity of 4.0–7.0 m/s) should be used. The longitudinal velocity should be 0.16–0.32 m/s (corresponding to the actual velocity of 0.5–1.0 m/s).


2021 ◽  
Vol 112 ◽  
pp. 103941
Author(s):  
Lu He ◽  
Zhisheng Xu ◽  
Frank Markert ◽  
Jiaming Zhao ◽  
En Xie ◽  
...  

Equipment ◽  
2006 ◽  
Author(s):  
L. H. Hu ◽  
W. K. Chow ◽  
Y. Z. Li ◽  
R. Huo
Keyword(s):  

1997 ◽  
Vol 25 (3) ◽  
pp. 187-213 ◽  
Author(s):  
F. Mancosu ◽  
G. Matrascia ◽  
F. Cheli

Abstract A rigid ring model of the tire for the study of in-plane dynamics and a new technique for determining the parameters of the model are presented in this paper. This model can be used for studying the comfort of vehicles, problems of driving, and braking problems in the longitudinal direction. Comparison with finite element models shows that the rigid ring model of the tire is capable of describing the in-plane eigenmode shapes in the frequency range of 0–130 Hz. The well-known “brush model,” integrated into the tire model, is introduced to take into account the slide phenomena in the contact patch. The parameters of the model can be correlated with the physical properties of the tire so that designers can take advantage of such a correlation in the development of new tires in terms of time, cost, and performance. The technique used to determine the parameters of the model for some automobile tires include the direct measurements of some physical properties (mass, moment of inertia, stiffness) and a method of identification applied on the results from a dynamic test. The model is able to predict experimental data in terms of natural frequencies and relative dampings. Results from the application of this technique on two tires are reported.


Alloy Digest ◽  
1983 ◽  
Vol 32 (3) ◽  

Abstract AISI 1141 is a resulfurized carbon steel containing nominally 1.50% manganese and 0.08-0.13% sulfur to give it free-machining characteristics. It has relatively low hardenability. Its ductility and toughness are fairly good in the longitudinal direction but tend to be low in the transverse direction. It is highly recommended for high-production automatic-machine products. Among its many uses are screws, bolts, ball joints, spindles and light-duty gears. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-93. Producer or source: Carbon steel mills.


Akustika ◽  
2020 ◽  
pp. 45-50
Author(s):  
Alena Rohanová

This paper explores the analysis of sound speeds in the longitudinal direction and their reduction to the reference moisture content w = 12 %. The sound speed cw was determined with Sylvatest Duo device. Moisture content of beech sawmill assortments (round timber: N = 16, logs: N = 2 × 16, structural boards: N = 54) in the range of 12 – 72 % was measured. For the analysis purposes, the sound speed was converted to reference conditions (c12, uref = 12%). A second-degree polynomial (parabola) with a regression equation of the form: c// = 5649 - 27,371 × w + 0.0735 × w2 was used to convert cw to c12, and correction of measured and calculated values was used as well. The sound speeds c12 in sawmill assortments (c12,round, c12,log, c12,board) were evaluated by linear dependences. Dependence was not confirmed for c12,round and c12,board1 (r = 0.168), in contrast for c12,round and c12,log2 the dependence is statistically very significant (r = 0.634). The results of testing showed that the most suitable procedure for predicting quality of structural timber is the first step round timber – log2, the second step: log2 - board2. More exact results of the construction boards were obtained from log2 than from log1. The sound speed is used in the calculation of dynamic modulus of elasticity (Edyn). EN 408 mentions the possibility of using dynamic modulus of elasticity as an alternative method in predicting the quality of structural timber.


2021 ◽  
Vol 11 (3) ◽  
pp. 1171
Author(s):  
Chang Xu ◽  
Zhihong Sun ◽  
Guowei Shao

Two-unit cells developed to predict the effective thermal conductivities of four-directional carbon/carbon composites with the finite element method are proposed in this paper. The smaller-size unit cell is formulated from the larger-size unit cell by two 180° rotational transformations. The temperature boundary conditions corresponding to the two-unit cells are derived, and the validity is verified by the temperature and heat flux distributions at specific positions of the larger-size unit cell and the smaller-size unit cell. The thermal conductivities of the carbon fiber bundles and carbon fiber rods are measured firstly. Then, combined with the properties of the matrix, the effective thermal conductivities of the four-directional carbon/carbon composites are numerically predicted. The results in transverse direction predicted by the larger-size unit cell and the smaller-size unit cell are both higher than experimental values, which are 5.8 to 6.2% and 7.3 to 8.2%, respectively. In longitudinal direction, the calculated thermal conductivities of the larger-size unit cell and the smaller-size unit cell are 6.8% and 6.2% higher than the experimental results, respectively. In addition, carbon fiber rods with different diameters are set to clarify the influence on the effective thermal conductivities of the four-directional carbon/carbon composites.


Sign in / Sign up

Export Citation Format

Share Document