scholarly journals Aerosol optical depth (AOD) retrieval for atmospheric correction in Landsat-8 imagery using second simulation of a satellite signal in the solar spectrum-vector (6SV)

2019 ◽  
Vol 4 (2) ◽  
pp. 68-73
Author(s):  
Abdul Basith ◽  
Muhammad Ulin Nuha ◽  
Ratna Prastyani ◽  
Gathot Winarso

Atmospheric correction has been challenging task in digital image processing. It requires several atmospheric parameters in order to obtain accurate surface reflectance of objects within the image scene. One of the most crucial parameters required for accurate atmospheric correction is aerosol optical depth (AOD). AOD can be obtained by in-situ measurement or estimated from remote sensing observation. In this experiment, atmospheric correction was performed using second simulation of a satellite signal in the solar spectrum-vector (6SV) algorithm on Landsat-8 imagery in which AOD parameter was retrieved from surface reflectance inversion involving daily-global surface reflectance product of moderate resolution imaging spectroradiometer (MODIS). Furthermore, AOD retrieved from surface reflectance inversion was also validated using ground-based sun photometer observation data from aerosol robotic network (AERONET) station in Bandung, Indonesia. Our experiment shows the consistency between AOD from surface reflectance inversion and AOD from ground-based observation. Finally, 6SV was performed on Landsat-8 imagery to obtain the surface reflectance. We further compared surface reflectance of 6SV atmospheric correction and surface reflectance of Landsat-8 Level 2 product. The atmospherically corrected image also shared agreeable result with Landsat 8 Level-2 product.

Author(s):  
V. N. Pathak ◽  
M. R. Pandya ◽  
D. B. Shah ◽  
H. J. Trivedi

<p><strong>Abstract.</strong> In the present study, a physics based method called Scheme for Atmospheric Correction of Landsat-8 (SACLS8) is developed for the Operational Land Imager (OLI) sensor of Landsat-8. The Second Simulation of the Satellite Signal in the Solar Spectrum Vector (6SV) radiative transfer model is used in the simulations to obtain the surface reflectance. The surface reflectance derived using the SACL8 scheme is validated with the <i>in-situ</i> measurements of surface reflectance carried out at the homogeneous desert site located in the Little Rann of Kutch, Gujarat, India. The results are also compared with Landsat-8 surface reflectance standard data product over the same site. The good agreement of results with high coefficient of determination (R<sup>2</sup><span class="thinspace"></span>><span class="thinspace"></span>0.94) and low root mean square error (of the order of 0.03) with <i>in-situ</i> measurement values as well as those obtained from the Landsat-8 surface reflectance data establishes a good performance of the SACLS8 scheme for the atmospheric correction of Landsat-8 dataset.</p>


Author(s):  
Yan Li ◽  
Yuanliang Liu ◽  
Jianliang Wu

Aerosol Optical Depth (AOD) is one of the most important parameters in the atmospheric correction of remote sensing images. We present a new method of per pixel AOD retrieval using the imagery of Landsat8. It is based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S). General dark target method takes dense vegetation pixels as dark targets and derives their 550nm AODs directly from the LUT, and interpolates the AODs of other pixels according to spatial neighbourhood using those of dark target pixels. This method will down estimate the AOD levels for urban areas. We propose an innovative method to retrieval the AODs using multiple temporal data. For a pixel which has nothing change between the associated time, there must exists an intersection of surface albedo. When there are enough data to find the intersection it ought to be a value that meet the error tolerance. In this paper, we present an example of using three temporal Landsat ETM+ image to retrieve AOD taking Beijing as the testing area. The result is compared to the commonly employed dark target algorithm to show the effectiveness of the methods.


Author(s):  
Yan Li ◽  
Yuanliang Liu ◽  
Jianliang Wu

Aerosol Optical Depth (AOD) is one of the most important parameters in the atmospheric correction of remote sensing images. We present a new method of per pixel AOD retrieval using the imagery of Landsat8. It is based on Second Simulation of the Satellite Signal in the Solar Spectrum (6S). General dark target method takes dense vegetation pixels as dark targets and derives their 550nm AODs directly from the LUT, and interpolates the AODs of other pixels according to spatial neighbourhood using those of dark target pixels. This method will down estimate the AOD levels for urban areas. We propose an innovative method to retrieval the AODs using multiple temporal data. For a pixel which has nothing change between the associated time, there must exists an intersection of surface albedo. When there are enough data to find the intersection it ought to be a value that meet the error tolerance. In this paper, we present an example of using three temporal Landsat ETM+ image to retrieve AOD taking Beijing as the testing area. The result is compared to the commonly employed dark target algorithm to show the effectiveness of the methods.


Author(s):  
Fadila Muchsin ◽  
Liana Fibriawati ◽  
Kuncoro Adhi Pradhono

Three methods of atmospheric correction, Second Simulation of the Satellite Signal in the Solar Spectrum (6S), Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) and the model Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH), have been applied to the level 1T Landsat-7 image Jakarta area. The atmospheric corrected image is then compared with the TOA reflectance image. The results show that there is an improvement of the spectral pattern on the TOA reflectance image by the decrease of the reflectance value of each object by (1 - 11) % after the atmospheric correction of all models for visible bands (blue, green and red). In the NIR and SWIR bands there is an increase in the spectral value of about 1% to the TOA reflectance on all objects except wetland for the LEDAPS model. The percentage of the increase and the decrease in spectral values of 6S and FLAASH models have the same tendency. Analyzes were also performed on the NDVI values of each model, where NDVI values were relatively higher after atmospheric correction. The NDVI value of rice crop on FLAASH model is the same as 6S model that is equal to 0.95 and for wetland, it has the same value between FLAASH model and LEDAPS which is 0.23. NDVI value of entire scene for FLAASH model = 0.63, LEDAPS model = 0.56 and 6S model = 0.66. Before the atmospheric correction, the TOA is 0.45. Abstrak Tiga metode koreksi atmosfer diantaranya  Second Simulation of the Satellite Signal in the Solar Spectrum (6S), Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) dan model Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) telah diterapkan pada citra Landsat-7 level 1T wilayah Jakarta. Citra yang telah terkoreksi atmosfer dibandingkan dengan citra reflektan TOA. Hasilnya menunjukkan bahwa terdapat perbaikan pola spektral pada citra reflektan TOA dengan adanya penurunan nilai reflektan setiap obyek sebesar (1 – 11) % setelah dilakukan koreksi atmosfer pada semua model untuk kanal-kanal visible (blue, green dan red). Pada kanal NIR dan SWIR terjadi kenaikan nilai spektral yaitu sekitar 1% terhadap reflektan TOA pada semua objek terkecuali objek lahan basah untuk model LEDAPS. Persentase kenaikan dan penurunan nilai spektral model 6S dan FLAASH memiliki kecenderungan yang sama. Analisis juga dilakukan terhadap nilai NDVI masing-masing model, dimana nilai NDVI relatif lebih tinggi setelah koreksi atmosfer. Nilai NDVI tanaman padi pada model FLAASH sama dengan model 6S yaitu sebesar 0.95 dan untuk lahan basah memiliki nilai yang sama antara model FLAASH dan LEDAPS yaitu 0.23. Nilai NDVI seluruh scene untuk model FLAASH = 0.63, model LEDAPS = 0.56 dan model 6S = 0.66. Sebelum koreksi atmosfer (TOA) adalah 0.45. 


2011 ◽  
Vol 11 (4) ◽  
pp. 12519-12560
Author(s):  
H. Zhang ◽  
A. Lyapustin ◽  
Y. Wang ◽  
S. Kondragunta ◽  
I. Laszlo ◽  
...  

Abstract. Aerosol optical depth (AOD) retrieval from geostationary satellites has high temporal resolution compared to the polar orbiting satellites and thus enables us to monitor aerosol motion. However, current Geostationary Operational Environmental Satellites (GOES) have only one visible channel for retrieving aerosol and hence the retrieval accuracy is lower than those from the multichannel polar-orbiting satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). The operational GOES AOD retrieval algorithm (GOES Aerosol/Smoke Product, GASP) uses 28-day composite images from the visible channel to derive surface reflectance, which can produce large uncertainties. In this work, we develop a new AOD retrieval algorithm for the GOES imager by applying a modified multi-angle Implementation of Atmospheric Correction (MAIAC) algorithm. The algorithm assumes the surface Bidirectional Reflectance Distribution Function (BRDF) at channel 1 of GOES is proportional to seasonal average BRDF in the 2.1 μm channel from MODIS. The ratios between them are derived through time series analysis of the GOES visible channel images. The results of the AOD and surface reflectance retrievals are evaluated through comparison against those from Aerosol Robotic Network (AERONET), GASP, and MODIS. The AOD retrievals from the new algorithm demonstrate good agreement with AERONET retrievals at several sites across the US. They are comparable to the GASP retrievals in the eastern-central sites and are more accurate than GASP retrievals in the western sites. In the western US where surface reflectance is high, the new algorithm also produces larger AOD retrieval coverage than both GASP and MODIS.


2011 ◽  
Vol 11 (23) ◽  
pp. 11977-11991 ◽  
Author(s):  
H. Zhang ◽  
A. Lyapustin ◽  
Y. Wang ◽  
S. Kondragunta ◽  
I. Laszlo ◽  
...  

Abstract. Aerosol optical depth (AOD) retrievals from geostationary satellites have high temporal resolution compared to the polar orbiting satellites and thus enable us to monitor aerosol motion. However, current Geostationary Operational Environmental Satellites (GOES) have only one visible channel for retrieving aerosols and hence the retrieval accuracy is lower than those from the multichannel polar-orbiting satellite instruments such as the Moderate Resolution Imaging Spectroradiometer (MODIS). The operational GOES AOD retrieval algorithm (GOES Aerosol/Smoke Product, GASP) uses 28-day composite images from the visible channel to derive surface reflectance, which can produce large uncertainties. In this work, we develop a new AOD retrieval algorithm for the GOES imager by applying a modified Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. The algorithm assumes the surface Bidirectional Reflectance Distribution Function (BRDF) in the channel 1 of GOES is proportional to seasonal average MODIS BRDF in the 2.1 μm channel. The ratios between them are derived through time series analysis of the GOES visible channel images. The results of AOD and surface reflectance retrievals are evaluated through comparisons against those from Aerosol Robotic Network (AERONET), GASP, and MODIS. The AOD retrievals from the new algorithm demonstrate good agreement with AERONET retrievals at several sites across the US with correlation coefficients ranges from 0.71 to 0.85 at five out of six sites. At the two western sites Railroad Valley and UCSB, the MAIAC AOD retrievals have correlations of 0.8 and 0.85 with AERONET AOD, and are more accurate than GASP retrievals, which have correlations of 0.7 and 0.74 with AERONET AOD. At the three eastern sites, the correlations with AERONET AOD are from 0.71 to 0.81, comparable to the GASP retrievals. In the western US where surface reflectance is higher than 0.15, the new algorithm also produces larger AOD retrieval coverage than both GASP and MODIS.


2020 ◽  
Author(s):  
Yong Xue

&lt;p&gt;Aerosol optical depth (AOD) is an important factor to estimate the effect of aerosol on light, and an accurate retrieval of it can make great contribution to monitor atmosphere. Therefore, retrieval of AOD has been a frontier topic and attracted much attention from researchers at home and abroad. However, the spatial resolution of AOD, based on Moderate-resolution Imaging Spectroradiometer (MODIS), is low, and hard to meet the needs of regional air quality fine monitoring. In 2018, China launched Gaofen-6 satellite, which set up a network with Gaofen-1 enabling two-day revisited observations in China's land area, improving the scale and timeliness of remote sensing data acquisition and making up for the shortcomings of lacking multi-spectral satellite with medium and high spatial resolution. Along with advancement of the Earth Observation System and the launch of high-resolution satellites, it is of profound significance to give full play to the active role of high-scoring satellites, in monitoring atmospheric environmental elements such as atmospheric aerosols and particulate matter concentrations, and achieve high-resolution retrieval of AOD through Gaofen satellites.&lt;/p&gt;&lt;p&gt;In this paper the data of Gaofen-6 and Gaofen-1 was used to retrieve the AOD. based on the Synergetic Retrieval of Aerosol Properties (SRAP) algorithm. This algorithm can retrieve the surface reflectance and AOD synchronously through constructing a closed equation based on double star observations. It can be applied to various types of surface reflectance which extends the coverage of the retrieval of AOD inversion effectively. Experimental data includes the satellite data of New South Wales and eastern Queensland on November 21, 2019, which have been suffered from unprecedented large-scale forest fires for over 2 months. The retrieval of AOD during the time with the satellite data is benefit for the prevention and monitoring of forest fire. The experimental results are compared with the AERONET ground observation data for preliminary validation. The correlation coefficient is about 0.7. The experimental results show that the method have higher accuracy, and further validation work is continuing.&lt;/p&gt;


2021 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Xiaocheng Zhou ◽  
Xueping Liu ◽  
Xiaoqin Wang ◽  
Guojin He ◽  
Youshui Zhang ◽  
...  

Surface reflectance (SR) estimation is the most essential preprocessing step for multi-sensor remote sensing inversion of geophysical parameters. Therefore, accurate and stable atmospheric correction is particularly important, which is the premise and basis of the quantitative application of remote sensing. It can also be used to directly compare different images and sensors. The Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument (MSI) surface reflectance products are publicly available and demonstrate high accuracy. However, there is not enough validation using synchronous spectral measurements over China’s land surface. In this study, we utilized Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products reconstructed by Categorical Boosting (CatBoost) and 30 m ASTER Global Digital Elevation Model (ASTER GDEM) data to adjust the relevant parameters to optimize the Second Simulation of Satellite Signal in the Solar Spectrum (6S) model. The accuracy of surface reflectance products obtained from the optimized 6S model was compared with that of the original 6S model and the most commonly used Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model. Surface reflectance products were validated and evaluated with synchronous in situ measurements from 16 sites located in five provinces of China: Fujian, Gansu, Jiangxi, Hunan, and Guangdong. Through the indirect and direct validation across two sensors and three methods, it provides evidence that the synchronous measurements have the higher and more reliable validation accuracy. The results of the validation indicated that, for Landsat-8 OLI and Sentinel-2 MSI SR products, the overall root mean square error (RMSE) calculated results of optimized 6S, original 6S and FLAASH across all spectral bands were 0.0295, 0.0378, 0.0345, and 0.0313, 0.0450, 0.0380, respectively. R2 values reached 0.9513, 0.9254, 0.9316 and 0.9377, 0.8822, 0.9122 respectively. Compared with the original 6S model and FLAASH model, the mean percent absolute error (MPAE) of the optimized 6S model was reduced by 32.20% and 15.86% for Landsat-8 OLI, respectively. On the other, for the Sentinel-2 MSI SR product, the MPAE value was reduced by 33.56% and 33.32%. For the two kinds of data, the accuracy of each band was improved to varying extents by the optimized 6S model with the auxiliary data. These findings support the hypothesis that reliable auxiliary data are helpful in reducing the influence of the atmosphere on images and restoring reality as much as is feasible.


2019 ◽  
Vol 11 (4) ◽  
pp. 469 ◽  
Author(s):  
Christopher Ilori ◽  
Nima Pahlevan ◽  
Anders Knudby

Ocean colour (OC) remote sensing is important for monitoring marine ecosystems. However, inverting the OC signal from the top-of-atmosphere (TOA) radiance measured by satellite sensors remains a challenge as the retrieval accuracy is highly dependent on the performance of the atmospheric correction as well as sensor calibration. In this study, the performances of four atmospheric correction (AC) algorithms, the Atmospheric and Radiometric Correction of Satellite Imagery (ARCSI), Atmospheric Correction for OLI ‘lite’ (ACOLITE), Landsat 8 Surface Reflectance (LSR) Climate Data Record (Landsat CDR), herein referred to as LaSRC (Landsat 8 Surface Reflectance Code), and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) Data Analysis System (SeaDAS), implemented for Landsat 8 Operational Land Imager (OLI) data, were evaluated. The OLI-derived remote sensing reflectance (Rrs) products (also known as Level-2 products) were tested against near-simultaneous in-situ data acquired from the OC component of the Aerosol Robotic Network (AERONET-OC). Analyses of the match-ups revealed that generic atmospheric correction methods (i.e., ARCSI and LaSRC), which perform reasonably well over land, provide inaccurate Level-2 products over coastal waters, in particular, in the blue bands. Between water-specific AC methods (i.e., SeaDAS and ACOLITE), SeaDAS was found to perform better over complex waters with root-mean-square error (RMSE) varying from 0.0013 to 0.0005 sr−1 for the 443 and 655 nm channels, respectively. An assessment of the effects of dominant environmental variables revealed AC retrieval errors were influenced by the solar zenith angle and wind speed for ACOLITE and SeaDAS in the 443 and 482 nm channels. Recognizing that the AERONET-OC sites are not representative of inland waters, extensive research and analyses are required to further evaluate the performance of various AC methods for high-resolution imagers like Landsat 8 and Sentinel-2 under a broad range of aquatic/atmospheric conditions.


2022 ◽  
Vol 14 (2) ◽  
pp. 373
Author(s):  
Muhammad Bilal ◽  
Alaa Mhawish ◽  
Md. Arfan Ali ◽  
Janet E. Nichol ◽  
Gerrit de Leeuw ◽  
...  

The SEMARA approach, an integration of the Simplified and Robust Surface Reflectance Estimation (SREM) and Simplified Aerosol Retrieval Algorithm (SARA) methods, was used to retrieve aerosol optical depth (AOD) at 550 nm from a Landsat 8 Operational Land Imager (OLI) at 30 m spatial resolution, a Terra-Moderate Resolution Imaging Spectroradiometer (MODIS) at 500 m resolution, and a Visible Infrared Imaging Radiometer Suite (VIIRS) at 750 m resolution over bright urban surfaces in Beijing. The SEMARA approach coupled (1) the SREM method that is used to estimate the surface reflectance, which does not require information about water vapor, ozone, and aerosol, and (2) the SARA algorithm, which uses the surface reflectance estimated by SREM and AOD measurements obtained from the Aerosol Robotic NETwork (AERONET) site (or other high-quality AOD) as the input to estimate AOD without prior information on the aerosol optical and microphysical properties usually obtained from a look-up table constructed from long-term AERONET data. In the present study, AOD measurements were obtained from the Beijing AERONET site. The SEMARA AOD retrievals were validated against AOD measurements obtained from two other AERONET sites located at urban locations in Beijing, i.e., Beijing_RADI and Beijing_CAMS, over bright surfaces. The accuracy and uncertainties/errors in the AOD retrievals were assessed using Pearson’s correlation coefficient (r), root mean squared error (RMSE), relative mean bias (RMB), and expected error (EE = ± 0.05 ± 20%). EE is the envelope encompassing both absolute and relative errors and contains 68% (±1σ) of the good quality retrievals based on global validation. Here, the EE of the MODIS Dark Target algorithm at 3 km resolution is used to report the good quality SEMARA AOD retrievals. The validation results show that AOD from SEMARA correlates well with AERONET AOD measurements with high correlation coefficients (r) of 0.988, 0.980, and 0.981; small RMSE of 0.08, 0.09, and 0.08; and small RMB of 4.33%, 1.28%, and -0.54%. High percentages of retrievals, i.e., 85.71%, 91.53%, and 90.16%, were within the EE for Landsat 8 OLI, MODIS, and VIIRS, respectively. The results suggest that the SEMARA approach is capable of retrieving AOD over urban areas with high accuracy and small errors using high to medium spatial resolution satellite remote sensing data. This approach can be used for aerosol monitoring over bright urban surfaces such as in Beijing, which is frequently affected by severe dust storms and haze pollution, to evaluate their effects on public health.


Sign in / Sign up

Export Citation Format

Share Document