scholarly journals Cloud Health Resource Sharing Based on Consensus-Oriented Blockchain Technology: Case Study on a Breast Tumor Diagnosis Service (Preprint)

2019 ◽  
Author(s):  
Xiaobao Zhu ◽  
Jing Shi ◽  
Cuiyuan Lu

BACKGROUND In recent years, researchers have made significant efforts in advancing blockchain technology. This technology, with distinct features of decentralization and security, can be applied to many fields. In areas of health data and resource sharing, applications of blockchain technology are also emerging. OBJECTIVE In this study, we propose a cloud health resource-sharing model based on consensus-oriented blockchain technology and have developed a simulation study on breast tumor diagnosis. METHODS The proposed platform is built on a consortium or federated blockchain that possesses features of both centralization and decentralization. The consensus mechanisms generate operating standards for the proposed model. Open source Ethereum code is employed to provide the blockchain environment. Proof of Authority is selected as the consensus algorithm of block generation. RESULTS Based on the proposed model, a simulation case study for breast tumor classification is constructed. The simulation includes 9893 service requests from 100 users; 22 service providers are equipped with 22 different classification methods. Each request is fulfilled by a service provider recommended by the weighted k-nearest neighbors (KNN) algorithm. The majority of service requests are handled by 9 providers, and provider service evaluation scores tend to stabilize. Also, user priority on KNN weights significantly affects the system operation outcome. CONCLUSIONS The proposed model is feasible based on the simulation case study for the cloud service of breast tumor diagnosis and has the potential to be applied to other applications.

2021 ◽  
Vol 21 (4) ◽  
pp. 1-22
Author(s):  
Ismaeel Al Ridhawi ◽  
Moayad Aloqaily ◽  
Yaser Jararweh

The rise of fast communication media both at the core and at the edge has resulted in unprecedented numbers of sophisticated and intelligent wireless IoT devices. Tactile Internet has enabled the interaction between humans and machines within their environment to achieve revolutionized solutions both on the move and in real-time. Many applications such as intelligent autonomous self-driving, smart agriculture and industrial solutions, and self-learning multimedia content filtering and sharing have become attainable through cooperative, distributed, and decentralized systems, namely, volunteer computing. This article introduces a blockchain-enabled resource sharing and service composition solution through volunteer computing. Device resource, computing, and intelligence capabilities are advertised in the environment to be made discoverable and available for sharing with the aid of blockchain technology. Incentives in the form of on-demand service availability are given to resource and service providers to ensure fair and balanced cooperative resource usage. Blockchains are formed whenever a service request is initiated with the aid of fog and mobile edge computing (MEC) devices to ensure secure communication and service delivery for the participants. Using both volunteer computing techniques and tactile internet architectures, we devise a fast and reliable service provisioning framework that relies on a reinforcement learning technique. Simulation results show that the proposed solution can achieve high reward distribution, increased number of blockchain formations, reduced delays, and balanced resource usage among participants, under the premise of high IoT device availability.


Entropy ◽  
2021 ◽  
Vol 23 (12) ◽  
pp. 1657
Author(s):  
Ke Yuan ◽  
Yingjie Yan ◽  
Tong Xiao ◽  
Wenchao Zhang ◽  
Sufang Zhou ◽  
...  

In response to the rapid growth of credit-investigation data, data redundancy among credit-investigation agencies, privacy leakages of credit-investigation data subjects, and data security risks have been reported. This study proposes a privacy-protection scheme for a credit-investigation system based on blockchain technology, which realizes the secure sharing of credit-investigation data among multiple entities such as credit-investigation users, credit-investigation agencies, and cloud service providers. This scheme is based on blockchain technology to solve the problem of islanding of credit-investigation data and is based on zero-knowledge-proof technology, which works by submitting a proof to the smart contract to achieve anonymous identity authentication, ensuring that the identity privacy of credit-investigation users is not disclosed; this scheme is also based on searchable-symmetric-encryption technology to realize the retrieval of the ciphertext of the credit-investigation data. A security analysis showed that this scheme guarantees the confidentiality, the availability, the tamper-proofability, and the ciphertext searchability of credit-investigation data, as well as the fairness and anonymity of identity authentication in the credit-investigation data query. An efficiency analysis showed that, compared with similar identity-authentication schemes, the proof key of this scheme is smaller, and the verification time is shorter. Compared with similar ciphertext-retrieval schemes, the time for this scheme to generate indexes and trapdoors and return search results is significantly shorter.


2021 ◽  
Vol 11 (3) ◽  
pp. 19-32
Author(s):  
Shahin Fatima ◽  
Shish Ahmad

Cloud computing has become a feasible solution for virtualization of cloud resources. Although it has many prospective to hold individuals by providing many benefits to organizations, still there are security loopholes to outsource data. To ensure the ‘security' of data in cloud computing, quantum key cryptography is introduced. Quantum cryptography makes use of quantum mechanics and qubits. The proposed method made use of quantum key distribution with Kerberos to secure the data on the cloud. The paper discussed the model for quantum key distribution which makes use of Kerberos ticket distribution center for authentication of cloud service providers. The proposed model is compared with quantum key distribution and provides faster computation by producing less error rate.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Yazan Al-Issa ◽  
Mohammad Ashraf Ottom ◽  
Ahmed Tamrawi

Cloud computing is a promising technology that is expected to transform the healthcare industry. Cloud computing has many benefits like flexibility, cost and energy savings, resource sharing, and fast deployment. In this paper, we study the use of cloud computing in the healthcare industry and different cloud security and privacy challenges. The centralization of data on the cloud raises many security and privacy concerns for individuals and healthcare providers. This centralization of data (1) provides attackers with one-stop honey-pot to steal data and intercept data in-motion and (2) moves data ownership to the cloud service providers; therefore, the individuals and healthcare providers lose control over sensitive data. As a result, security, privacy, efficiency, and scalability concerns are hindering the wide adoption of the cloud technology. In this work, we found that the state-of-the art solutions address only a subset of those concerns. Thus, there is an immediate need for a holistic solution that balances all the contradicting requirements.


2018 ◽  
Vol 11 (2) ◽  
pp. 88-109
Author(s):  
Devki Nandan Jha ◽  
Deo Prakash Vidyarthi

Cloud computing is a technological advancement that provides services in the form of utility on a pay-per-use basis. As the cloud market is expanding, numerous service providers are joining the cloud platform with their services. This creates an indecision amongst the users to choose an appropriate service provider especially when the cloud provider provisions diverse type of virtual machines. The problem becomes more challenging when the user has different jobs requiring specific quality of service. To address the aforementioned problem, this article applies a hybrid heuristic using College Admission Problem and Analytical Hierarchical Process for stable matching of the users' job with the cloud's virtual machines. The case study depicts the effectiveness of the proposed model.


2021 ◽  
Author(s):  
Kashif Mehboob Khan ◽  
Junaid Arshad ◽  
Waheed Iqbal ◽  
Sidrah Abdullah ◽  
Hassan Zaib

AbstractCloud computing is an important technology for businesses and individual users to obtain computing resources over the Internet on-demand and flexibly. Although cloud computing has been adopted across diverse applications, the owners of time-and-performance critical applications require cloud service providers’ guarantees about their services, such as availability and response times. Service Level Agreements (SLAs) are a mechanism to communicate and enforce such guarantees typically represented as service level objectives (SLOs), and financial penalties are imposed on SLO violations. Due to delays and inaccuracies caused by manual processing, an automatic method to periodically verify SLA terms in a transparent and trustworthy manner is fundamental to effective SLA monitoring, leading to the acceptance and credibility of such service to the customers of cloud services. This paper presents a blockchain-based distributed infrastructure that leverages fundamental blockchain properties to achieve immutable and trustworthy SLA monitoring within cloud services. The paper carries out an in-depth empirical investigation for the scalability of the proposed system in order to address the challenge of transparently enforcing real-time monitoring of cloud-hosted services leveraging blockchain technology. This will enable all the stakeholders to enforce accurate execution of SLA without any imprecisions and delays by maintaining an immutable ledger publicly across blockchain network. The experimentation takes into consideration several attributes of blockchain which are critical in achieving optimum performance. The paper also investigates key characteristics of these factors and their impact to the behaviour of the system for further scaling it up under various cases for increased service utilization.


The eagle expresses of cloud computing plays a pivotal role in the development of technology. In this computing world everyone is active so the end users and providers use various applications which are working as a broker for providing and managing the services. The aim of the paper is to solve the problems in such a way that brokers will provide an optimized solution for cloud service providers and the end users. The key role of allocating the efficient resources by making the algorithm which works for the time and cost optimization keeping in consideration of its quality of services and characteristics. These both are affecting the performance of these techniques is a major drawback due to low accuracy and large computational complexity of the algorithms. As per the scenario, the approach of the research is based on the rough set theory (RST). It’s a strategy to found the information revelation and handle the issues like number of parameters (Virtualization, resource sharing, cloud standardization etc). The rough set theory is the new method in cloud service selection so that the best services to provide for cloud users and efficient service improvement for cloud providers.


Author(s):  
Tong Peng ◽  
Liu Chunling

With the development of modular manufacturing technology and diversified demand for products, the demand for differential warranty service has become increasingly prominent. This article proposes a differential service strategy for two-dimensional warranty using warranty claim data under consumer-side modularisation. In contrast to previous research that optimised maintenance strategies under a given failure density function, this article obtains actual usage rate and failure density functions of main failure types by determining the function type and parameter fitting. A detailed case study of a product under a two-dimensional warranty is discussed to interpret the proposed model. Using the mathematical model proposed in this research, warranty service providers can offer consumers a differential warranty service under consumer-side modularisation.


Sign in / Sign up

Export Citation Format

Share Document