Annotating and Detecting Topics from Social Media Forum and Modelling the Annotation to Derive Directions-A Case Study (Preprint)

2020 ◽  
Author(s):  
Athira B ◽  
Josette Jones ◽  
Sumam Mary Idicula ◽  
Anand Kulanthaivel ◽  
Sunandan Chakraborty ◽  
...  

BACKGROUND Widespread influence on social media has its ramifications on all walks of life over the last few decades. Interestingly enough, the healthcare sector is a significant beneficiary of the reports and pronouncements that appear on social media. Although medics and other health professionals are the final decision-makers, advice or recommendations from kindred patients has consequential role. In full appreciation of the current trend, the present paper explores the topics pertaining to the patients, diagnosed with breast cancer as well as the survivors, who are discussing on online fora. OBJECTIVE The study examines the online forum of Breast Cancer.org (BCO), automatically maps discussion entries to formal topics, and proposes a machine learning model to characterize the topics in the health-related discussion, so as to elicit meaningful deliberations. Therefore, the study of communication messages draws conclusions about what matters to the patients. METHODS Manual annotation was made in the posts of a few randomly selected forums. To explore the topics of breast cancer patients and survivors, 736 posts are selected for semantic annotation. The entire process was automated using machine learning model falling into category of supervised learning algorithms. The effectiveness of those algorithms used for above process has been compared. RESULTS The method could classify following 8-high level topics, such as writing medication reviews, explaining the adverse effects of medication, clinician knowledge, various treatment options, seeking and supporting various matters, diagnostic procedures, financial issues and implications in everyday life. The model viz. Ensembled Neural Network (ENN) achieved a promising predicted score of 83.4 % F1-score among four different models. CONCLUSIONS The research was able to segregate and name the posts all into a set of 8 classes and supported by the efficient scheme for encoding text to vectors, the current machine learning models are shown to give impressive performance in modelling the annotation process.

2021 ◽  
Author(s):  
Athira B ◽  
Josette Jones ◽  
Sumam Mary Idicula ◽  
Anand Kulanthaivel ◽  
Enming Zhang

Abstract The widespread influence of social media impacts every aspect of life, including the healthcare sector. Although medics and health professionals are the final decision makers, the advice and recommendations obtained from fellow patients are significant. In this context, the present paper explores the topics of discussion posted by breast cancer patients and survivors on online forums. The study examines an online forum, Breastcancer.org, maps the discussion entries to several topics, and proposes a machine learning model based on a classification algorithm to characterize the topics. To explore the topics of breast cancer patients and survivors, approximately 1000 posts are selected and manually labeled with annotations. In contrast, millions of posts are available to build the labels. A semi-supervised learning technique is used to build the labels for the unlabeled data; hence, the large data are classified using a deep learning algorithm. The deep learning algorithm BiLSTM with BERT word embedding technique provided a better f1-score of 79.5%. This method is able to classify the following topics: medication reviews, clinician knowledge, various treatment options, seeking and providing support, diagnostic procedures, financial issues and implications for everyday life. What matters the most for the patients is coping with everyday living as well as seeking and providing emotional and informational support. The approach and findings show the potential of studying social media to provide insight into patients' experiences with cancer like critical health problems.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
B. Athira ◽  
Josette Jones ◽  
Sumam Mary Idicula ◽  
Anand Kulanthaivel ◽  
Enming Zhang

AbstractThe widespread influence of social media impacts every aspect of life, including the healthcare sector. Although medics and health professionals are the final decision makers, the advice and recommendations obtained from fellow patients are significant. In this context, the present paper explores the topics of discussion posted by breast cancer patients and survivors on online forums. The study examines an online forum, Breastcancer.org, maps the discussion entries to several topics, and proposes a machine learning model based on a classification algorithm to characterize the topics. To explore the topics of breast cancer patients and survivors, approximately 1000 posts are selected and manually labeled with annotations. In contrast, millions of posts are available to build the labels. A semi-supervised learning technique is used to build the labels for the unlabeled data; hence, the large data are classified using a deep learning algorithm. The deep learning algorithm BiLSTM with BERT word embedding technique provided a better f1-score of 79.5%. This method is able to classify the following topics: medication reviews, clinician knowledge, various treatment options, seeking and providing support, diagnostic procedures, financial issues and implications for everyday life. What matters the most for the patients is coping with everyday living as well as seeking and providing emotional and informational support. The approach and findings show the potential of studying social media to provide insight into patients' experiences with cancer like critical health problems.


2020 ◽  
Author(s):  
Athira B ◽  
Josette Jones ◽  
Sumam Mary Idicula ◽  
Anand Kulanthaivel ◽  
Enming Zhang

Abstract The widespread influence of social media impacts every aspect of life, including the healthcare sector. Although medics and health professionals are the final decision makers, the advice and recommendations obtained from fellow patients are significant. In this context, the present paper explores the topics of discussion posted by breast cancer patients and survivors on online forums. The study examines an online forum, Breastcancer.org, maps the discussion entries to several topics, and proposes a machine learning model based on a classification algorithm to characterize the topics. To explore the topics of breast cancer patients and survivors, approximately 1000 posts are selected and manually labeled with annotations. In contrast, millions of posts are available to build the labels. A semi-supervised learning technique is used to build the labels for the unlabeled data; hence, the large data are classified using a deep learning algorithm. The deep learning algorithm BiLSTM with BERT word embedding technique provided a better f1-score of 79.5%. This method is able to classify the following topics: medication reviews, clinician knowledge, various treatment options, seeking and providing support, diagnostic procedures, financial issues and implications for everyday life. What matters the most for the patients is coping with everyday living as well as seeking and providing emotional and informational support. The approach and findings show the potential of studying social media to provide insight into patients' experiences with cancer like critical health problems.


2021 ◽  
pp. 1-13
Author(s):  
C S Pavan Kumar ◽  
L D Dhinesh Babu

Sentiment analysis is widely used to retrieve the hidden sentiments in medical discussions over Online Social Networking platforms such as Twitter, Facebook, Instagram. People often tend to convey their feelings concerning their medical problems over social media platforms. Practitioners and health care workers have started to observe these discussions to assess the impact of health-related issues among the people. This helps in providing better care to improve the quality of life. Dementia is a serious disease in western countries like the United States of America and the United Kingdom, and the respective governments are providing facilities to the affected people. There is much chatter over social media platforms concerning the patients’ care, healthy measures to be followed to avoid disease, check early indications. These chatters have to be carefully monitored to help the officials take necessary precautions for the betterment of the affected. A novel Feature engineering architecture that involves feature-split for sentiment analysis of medical chatter over online social networks with the pipeline is proposed that can be used on any Machine Learning model. The proposed model used the fuzzy membership function in refining the outputs. The machine learning model has obtained sentiment score is subjected to fuzzification and defuzzification by using the trapezoid membership function and center of sums method, respectively. Three datasets are considered for comparison of the proposed and the regular model. The proposed approach delivered better results than the normal approach and is proved to be an effective approach for sentiment analysis of medical discussions over online social networks.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-66
Author(s):  
Febri Astiko ◽  
Achmad Khodar

This study aims to design a machine learning model of sentiment analysis on Indosat Ooredoo service reviews on social media twitter using the Naive Bayes algorithm as a classifier of positive and negative labels. This sentiment analysis uses machine learning to get patterns an model that can be used again to predict new data.


Author(s):  
Yuhong Huang ◽  
Wenben Chen ◽  
Xiaoling Zhang ◽  
Shaofu He ◽  
Nan Shao ◽  
...  

Aim: After neoadjuvant chemotherapy (NACT), tumor shrinkage pattern is a more reasonable outcome to decide a possible breast-conserving surgery (BCS) than pathological complete response (pCR). The aim of this article was to establish a machine learning model combining radiomics features from multiparametric MRI (mpMRI) and clinicopathologic characteristics, for early prediction of tumor shrinkage pattern prior to NACT in breast cancer.Materials and Methods: This study included 199 patients with breast cancer who successfully completed NACT and underwent following breast surgery. For each patient, 4,198 radiomics features were extracted from the segmented 3D regions of interest (ROI) in mpMRI sequences such as T1-weighted dynamic contrast-enhanced imaging (T1-DCE), fat-suppressed T2-weighted imaging (T2WI), and apparent diffusion coefficient (ADC) map. The feature selection and supervised machine learning algorithms were used to identify the predictors correlated with tumor shrinkage pattern as follows: (1) reducing the feature dimension by using ANOVA and the least absolute shrinkage and selection operator (LASSO) with 10-fold cross-validation, (2) splitting the dataset into a training dataset and testing dataset, and constructing prediction models using 12 classification algorithms, and (3) assessing the model performance through an area under the curve (AUC), accuracy, sensitivity, and specificity. We also compared the most discriminative model in different molecular subtypes of breast cancer.Results: The Multilayer Perception (MLP) neural network achieved higher AUC and accuracy than other classifiers. The radiomics model achieved a mean AUC of 0.975 (accuracy = 0.912) on the training dataset and 0.900 (accuracy = 0.828) on the testing dataset with 30-round 6-fold cross-validation. When incorporating clinicopathologic characteristics, the mean AUC was 0.985 (accuracy = 0.930) on the training dataset and 0.939 (accuracy = 0.870) on the testing dataset. The model further achieved good AUC on the testing dataset with 30-round 5-fold cross-validation in three molecular subtypes of breast cancer as following: (1) HR+/HER2–: 0.901 (accuracy = 0.816), (2) HER2+: 0.940 (accuracy = 0.865), and (3) TN: 0.837 (accuracy = 0.811).Conclusions: It is feasible that our machine learning model combining radiomics features and clinical characteristics could provide a potential tool to predict tumor shrinkage patterns prior to NACT. Our prediction model will be valuable in guiding NACT and surgical treatment in breast cancer.


2021 ◽  
Vol 11 ◽  
Author(s):  
Yadi Zhu ◽  
Ling Yang ◽  
Hailin Shen

PurposeTo explore the value of machine learning model based on CE-MRI radiomic features in preoperative prediction of sentinel lymph node (SLN) metastasis of breast cancer.MethodsThe clinical, pathological and MRI data of 177 patients with pathologically confirmed breast cancer (81 with SLN positive and 96 with SLN negative) and underwent conventional DCE-MRI before surgery in the First Affiliated Hospital of Soochow University from January 2015 to May 2021 were analyzed retrospectively. The samples were randomly divided into the training set (n=123) and validation set (n= 54) according to the ratio of 7:3. The radiomic features were derived from DCE-MRI phase 2 images, and 1,316 original eigenvectors are normalized by maximum and minimum normalization. The optimal feature filter and selection operator (LASSO) algorithm were used to obtain the optimal features. Five machine learning models of Support Vector Machine, Random Forest, Logistic Regression, Gradient Boosting Decision Tree, and Decision Tree were constructed based on the selected features. Radiomics signature and independent risk factors were incorporated to build a combined model. The receiver operating characteristic curve and area under the curve were used to evaluate the performance of the above models, and the accuracy, sensitivity, and specificity were calculated.ResultsThere is no significant difference between all clinical and histopathological variables in breast cancer patients with and without SLN metastasis (P >0.05), except tumor size and BI-RADS classification (P< 0.01). Thirteen features were obtained as optimal features for machine learning model construction. In the validation set, the AUC (0.86) of SVM was the highest among the five machine learning models. Meanwhile, the combined model showed better performance in sentinel lymph node metastasis (SLNM) prediction and achieved a higher AUC (0.88) in the validation set.ConclusionsWe revealed the clinical value of machine learning models established based on CE-MRI radiomic features, providing a highly accurate, non-invasive, and convenient method for preoperative prediction of SLNM in breast cancer patients.


2021 ◽  
pp. 656-669
Author(s):  
David Langley ◽  
Caoimhe Reidy ◽  
Mark Towey ◽  
Manisha ◽  
Denis Dennehy

Sign in / Sign up

Export Citation Format

Share Document