A Perspective of Electronic Cigarette Users on the COVID-19 Pandemic in Twitter: Observational Study (Preprint)

2020 ◽  
Author(s):  
Yankun Gao ◽  
Zidian Xie ◽  
Dongmei Li

BACKGROUND Previous studies indicated electronic cigarette users might be more vulnerable to COVID-19 infections and could develop more severe symptoms once contracted COVID-19 due to their impaired immune responses to virus infections. Social media has been widely used to express users’ responses to the COVID-19 pandemic. OBJECTIVE We aimed to examine the responses of electronic cigarette Twitter users to the COVID-19 pandemic using Twitter data. METHODS The COVID-19 dataset contained COVID-19-related Twitter posts (tweets) between March 5th, 2020 and April 3rd, 2020. Ecig group included Twitter users who didn’t have commercial accounts but ever retweeted e-cigarette promotion posts between May 2019 and August 2019. Twitter users who didn’t post or retweet any e-cigarette-related tweets were defined as Non-Ecig group. Sentiment analysis was conducted to compare sentiment scores towards the COVID-19 pandemic between both groups. Topic modeling was used to compare the main topics discussed between the two groups. RESULTS The US COVID-19 dataset consisted of 1,112,558 COVID-19-related tweets from 15,657 unique Twitter users in the Ecig group and 9,789,584 COVID-19-related tweets from 2,128,942 unique Twitter users in the Non-Ecig group. Sentiment analysis showed that the Ecig group have more negative sentiment scores than the Non-Ecig group. Results from topic modeling indicated the Ecig group had more concern about COVID-19 related death, while the Non-Ecig group cared more about the government’s responses to the COVID-19 pandemic. CONCLUSIONS Electronic cigarette Twitter users has more concern towards the COVID-19 pandemic. Twitter is a useful tool to timely monitor public responses to the COVID-19 pandemic.

2020 ◽  
Author(s):  
Yankun Gao ◽  
Zidian Xie ◽  
Dongmei Li

BACKGROUND Previous studies have shown that electronic cigarette (e-cigarette) users might be more vulnerable to COVID-19 infection and could develop more severe symptoms if they contract the disease owing to their impaired immune responses to viral infections. Social media platforms such as Twitter have been widely used by individuals worldwide to express their responses to the current COVID-19 pandemic. OBJECTIVE In this study, we aimed to examine the longitudinal changes in the attitudes of Twitter users who used e-cigarettes toward the COVID-19 pandemic, as well as compare differences in attitudes between e-cigarette users and nonusers based on Twitter data. METHODS The study dataset containing COVID-19–related Twitter posts (tweets) posted between March 5 and April 3, 2020, was collected using a Twitter streaming application programming interface with COVID-19–related keywords. Twitter users were classified into two groups: Ecig group, including users who did not have commercial accounts but posted e-cigarette–related tweets between May 2019 and August 2019, and non-Ecig group, including users who did not post any e-cigarette–related tweets. Sentiment analysis was performed to compare sentiment scores towards the COVID-19 pandemic between both groups and determine whether the sentiment expressed was positive, negative, or neutral. Topic modeling was performed to compare the main topics discussed between the groups. RESULTS The US COVID-19 dataset consisted of 4,500,248 COVID-19–related tweets collected from 187,399 unique Twitter users in the Ecig group and 11,479,773 COVID-19–related tweets collected from 2,511,659 unique Twitter users in the non-Ecig group. Sentiment analysis showed that Ecig group users had more negative sentiment scores than non-Ecig group users. Results from topic modeling indicated that Ecig group users had more concerns about deaths due to COVID-19, whereas non-Ecig group users cared more about the government’s responses to the COVID-19 pandemic. CONCLUSIONS Our findings show that Twitter users who tweeted about e-cigarettes had more concerns about the COVID-19 pandemic. These findings can inform public health practitioners to use social media platforms such as Twitter for timely monitoring of public responses to the COVID-19 pandemic and educating and encouraging current e-cigarette users to quit vaping to minimize the risks associated with COVID-19.


10.2196/24859 ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. e24859
Author(s):  
Yankun Gao ◽  
Zidian Xie ◽  
Dongmei Li

Background Previous studies have shown that electronic cigarette (e-cigarette) users might be more vulnerable to COVID-19 infection and could develop more severe symptoms if they contract the disease owing to their impaired immune responses to viral infections. Social media platforms such as Twitter have been widely used by individuals worldwide to express their responses to the current COVID-19 pandemic. Objective In this study, we aimed to examine the longitudinal changes in the attitudes of Twitter users who used e-cigarettes toward the COVID-19 pandemic, as well as compare differences in attitudes between e-cigarette users and nonusers based on Twitter data. Methods The study dataset containing COVID-19–related Twitter posts (tweets) posted between March 5 and April 3, 2020, was collected using a Twitter streaming application programming interface with COVID-19–related keywords. Twitter users were classified into two groups: Ecig group, including users who did not have commercial accounts but posted e-cigarette–related tweets between May 2019 and August 2019, and non-Ecig group, including users who did not post any e-cigarette–related tweets. Sentiment analysis was performed to compare sentiment scores towards the COVID-19 pandemic between both groups and determine whether the sentiment expressed was positive, negative, or neutral. Topic modeling was performed to compare the main topics discussed between the groups. Results The US COVID-19 dataset consisted of 4,500,248 COVID-19–related tweets collected from 187,399 unique Twitter users in the Ecig group and 11,479,773 COVID-19–related tweets collected from 2,511,659 unique Twitter users in the non-Ecig group. Sentiment analysis showed that Ecig group users had more negative sentiment scores than non-Ecig group users. Results from topic modeling indicated that Ecig group users had more concerns about deaths due to COVID-19, whereas non-Ecig group users cared more about the government’s responses to the COVID-19 pandemic. Conclusions Our findings show that Twitter users who tweeted about e-cigarettes had more concerns about the COVID-19 pandemic. These findings can inform public health practitioners to use social media platforms such as Twitter for timely monitoring of public responses to the COVID-19 pandemic and educating and encouraging current e-cigarette users to quit vaping to minimize the risks associated with COVID-19.


2020 ◽  
Vol 16 (3) ◽  
pp. 273
Author(s):  
Nawang Indah Cahyaningrum ◽  
Danty Welmin Yoshida Fatima ◽  
Wisnu Adi Kusuma ◽  
Sekar Ayu Ramadhani ◽  
Muhammad Rizqi Destanto ◽  
...  

Twitter is one of social media where its user can share many responses for a phenomenon through a tweet. This research used 5000 tweets from Twitter users in Bahasa Indonesia with keyword “RUU KUHP(Draft Law of KUHP)” from 16th of September until 22nd of September 2019. That tweets were processed using Rstudio software with sentiment analysis that is one of Text Mining methods. This research aims to classify Twitter users’ responses to RUU KUHP to be negative sentiment, poisitive negative, and neutral. Also, this research also aims to know about topics’ frequencies that were related to RUU KUHP through visualization with bar plot and also wordcloud. This research also aims to know words that are associated with the most frequent words. Form this research, can be known that Twitter users’ responses to RUU KUHP tend to have neutral sentiment that means they did not take side between agreeing or disagreeing. From this research, also can be known about 10 most frequent words, there are kpk, tunda, dpr, pasal, kesal, jokowi, presiden, masuk, ya, and sahkan. Beside that, can be known the other words that are associated with them and also their probability.


2019 ◽  
Author(s):  
Xinyi Lu ◽  
Long Chen ◽  
Jianbo Yuan ◽  
Joyce Luo ◽  
Jiebo Luo ◽  
...  

BACKGROUND The number of electronic cigarette (e-cigarette) users has been increasing rapidly in recent years, especially among youth and young adults. More e-cigarette products have become available, including e-liquids with various brands and flavors. Various e-liquid flavors have been frequently discussed by e-cigarette users on social media. OBJECTIVE This study aimed to examine the longitudinal prevalence of mentions of electronic cigarette liquid (e-liquid) flavors and user perceptions on social media. METHODS We applied a data-driven approach to analyze the trends and macro-level user sentiments of different e-cigarette flavors on social media. With data collected from web-based stores, e-liquid flavors were classified into categories in a flavor hierarchy based on their ingredients. The e-cigarette–related posts were collected from social media platforms, including Reddit and Twitter, using e-cigarette–related keywords. The temporal trend of mentions of e-liquid flavor categories was compiled using Reddit data from January 2013 to April 2019. Twitter data were analyzed using a sentiment analysis from May to August 2019 to explore the opinions of e-cigarette users toward each flavor category. RESULTS More than 1000 e-liquid flavors were classified into 7 major flavor categories. The fruit and sweets categories were the 2 most frequently discussed e-liquid flavors on Reddit, contributing to approximately 58% and 15%, respectively, of all flavor-related posts. We showed that mentions of the fruit flavor category had a steady overall upward trend compared with other flavor categories that did not show much change over time. Results from the sentiment analysis demonstrated that most e-liquid flavor categories had significant positive sentiments, except for the beverage and tobacco categories. CONCLUSIONS The most updated information about the popular e-liquid flavors mentioned on social media was investigated, which showed that the prevalence of mentions of e-liquid flavors and user perceptions on social media were different. Fruit was the most frequently discussed flavor category on social media. Our study provides valuable information for future regulation of flavored e-cigarettes.


Author(s):  
Xueting Wang ◽  
Canruo Zou ◽  
Zidian Xie ◽  
Dongmei Li

Background: With the pandemic of COVID-19 and the release of related policies, discussions about the COVID-19 are widespread online. Social media becomes a reliable source for understanding public opinions toward this virus outbreak. Objective: This study aims to explore public opinions toward COVID-19 on social media by comparing the differences in sentiment changes and discussed topics between California and New York in the United States. Methods: A dataset with COVID-19-related Twitter posts was collected from March 5, 2020 to April 2, 2020 using Twitter streaming API. After removing any posts unrelated to COVID-19, as well as posts that contain promotion and commercial information, two individual datasets were created based on the geolocation tags with tweets, one containing tweets from California state and the other from New York state. Sentiment analysis was conducted to obtain the sentiment score for each COVID-19 tweet. Topic modeling was applied to identify top topics related to COVID-19. Results: While the number of COVID-19 cases increased more rapidly in New York than in California in March 2020, the number of tweets posted has a similar trend over time in both states. COVID-19 tweets from California had more negative sentiment scores than New York. There were some fluctuations in sentiment scores in both states over time, which might correlate with the policy changes and the severity of COVID-19 pandemic. The topic modeling results showed that the popular topics in both California and New York states are similar, with "protective measures" as the most prevalent topic associated with COVID-19 in both states. Conclusions: Twitter users from California had more negative sentiment scores towards COVID-19 than Twitter users from New York. The prevalent topics about COVID-19 discussed in both states were similar with some slight differences.


2020 ◽  
Vol 4 (2) ◽  
pp. 176-182
Author(s):  
Oka Intan ◽  
Sri Widiyanesti

The rapid development of technology allows everything to accessed by the internet that causes many users of social media and one of the social media is Twitter. An interesting topic to discuss on Twitter is about new and fresh things that attract many users to get involved. One of the things that attract Twitter users is the construction of a new airport, namely Kertajati Airport, which has some problems with airport activities, such as the small number of visitors, lonely conditions of the airport, and decreased number of routes. This study aims to find out Twitter user sentiments towards Kertajati Airport in West Java to know the quality of Kertajati Airport. The method used in this study is sentiment analysis by looking at the calculation of how many positive and negative sentiment have been obtained with the most result so it can reflect the quality of Kertajati Airport and then there is a word cloud to see the spread of word related to sentiment. The results of this study indicate that the quality of the Kertajati Airport cannot be said to be good because the results of the sentiment analysis found that negative sentiments have more percentages than positive sentiments


2020 ◽  
Vol 8 (5) ◽  
pp. 4219-4224

Social media emerged as one of the key components to reach disaster affected people, as they supplement planning and operational coordination. Sentiment analysis was expended to identify, extract or characterize subjective information, such as opinions, expressed in a tweet. The sentiment expressed is analyzed and is classified as positive or negative sentiment, which is not versatile enough to capture the exact sentiment conveyed by the user. Opinion mining is a machine learning process used to extract information conveyed by the user in the form of text. In this paper, the lexical analysis to sentiment analysis of twitter data is employed. Conventionally, the sentiment is conveyed using the polarity of the data but in this paper, sentiment intensity is employed to convey the sentiments. Performing sentiment analysis on tweets gives us the sentiment intensity conveyed by the user, which in turn is used to calculate the severity of the disaster event specified by the user. Further, it is also used to classify the tweets based on their severity. This paper proposes a methodology to extract relevant sentiment information from Location Based Social Network (LBSN) and suggests a unique scale to classify this information to help disaster management authority.


10.2196/17280 ◽  
2020 ◽  
Vol 22 (6) ◽  
pp. e17280 ◽  
Author(s):  
Xinyi Lu ◽  
Long Chen ◽  
Jianbo Yuan ◽  
Joyce Luo ◽  
Jiebo Luo ◽  
...  

Background The number of electronic cigarette (e-cigarette) users has been increasing rapidly in recent years, especially among youth and young adults. More e-cigarette products have become available, including e-liquids with various brands and flavors. Various e-liquid flavors have been frequently discussed by e-cigarette users on social media. Objective This study aimed to examine the longitudinal prevalence of mentions of electronic cigarette liquid (e-liquid) flavors and user perceptions on social media. Methods We applied a data-driven approach to analyze the trends and macro-level user sentiments of different e-cigarette flavors on social media. With data collected from web-based stores, e-liquid flavors were classified into categories in a flavor hierarchy based on their ingredients. The e-cigarette–related posts were collected from social media platforms, including Reddit and Twitter, using e-cigarette–related keywords. The temporal trend of mentions of e-liquid flavor categories was compiled using Reddit data from January 2013 to April 2019. Twitter data were analyzed using a sentiment analysis from May to August 2019 to explore the opinions of e-cigarette users toward each flavor category. Results More than 1000 e-liquid flavors were classified into 7 major flavor categories. The fruit and sweets categories were the 2 most frequently discussed e-liquid flavors on Reddit, contributing to approximately 58% and 15%, respectively, of all flavor-related posts. We showed that mentions of the fruit flavor category had a steady overall upward trend compared with other flavor categories that did not show much change over time. Results from the sentiment analysis demonstrated that most e-liquid flavor categories had significant positive sentiments, except for the beverage and tobacco categories. Conclusions The most updated information about the popular e-liquid flavors mentioned on social media was investigated, which showed that the prevalence of mentions of e-liquid flavors and user perceptions on social media were different. Fruit was the most frequently discussed flavor category on social media. Our study provides valuable information for future regulation of flavored e-cigarettes.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yi Zhao ◽  
Haixu Xi ◽  
Chengzhi Zhang

AbstractCoronavirus disease 2019 (COVID-19) pandemic-related information are flooded on social media, and analyzing this information from an occupational perspective can help us to understand the social implications of this unprecedented disruption. In this study, using a COVID-19-related dataset collected with the Twitter IDs, we conduct topic and sentiment analysis from the perspective of occupation, by leveraging Latent Dirichlet Allocation (LDA) topic modeling and Valence Aware Dictionary and sEntiment Reasoning (VADER) model, respectively. The experimental results indicate that there are significant topic preference differences between Twitter users with different occupations. However, occupation-linked affective differences are only partly demonstrated in our study; Twitter users with different income levels have nothing to do with sentiment expression on covid-19-related topics.


Author(s):  
Puji Winar Cahyo ◽  
Muhammad Habibi

The efficiency of using social media affected modern society's nature and communication; they are more interested in talking through social media than meeting in the real world. The number of talks on social media content depends on the topic being discussed. The more topic interesting will impact the amount of data on social media will be. The data can be analyzed to get the influence of actors (account mentions) on the conversation. The power of an actor can be measured from how often the actor is mentioned in the conversation. This paper aims to conduct entity profiling on social media content to analyze an actor's influence on discussion. Furthermore, using sentiment analysis can determine the sentiment about an actor from a conversation topic. The Latent Dirichlet Allocation (LDA) method is used for analyzes topic modeling, while the Support Vector Machine (SVM) is used for sentiment analysis. This research can show that topics with positive sentiment are more likely to be involved in disaster management accounts, while topics with negative sentiment are more towards involvement in politicians, critics, and online news.


Sign in / Sign up

Export Citation Format

Share Document