scholarly journals Sentiment Analysis of West Java International Airport (Bijb) Kertajati on Twitter

2020 ◽  
Vol 4 (2) ◽  
pp. 176-182
Author(s):  
Oka Intan ◽  
Sri Widiyanesti

The rapid development of technology allows everything to accessed by the internet that causes many users of social media and one of the social media is Twitter. An interesting topic to discuss on Twitter is about new and fresh things that attract many users to get involved. One of the things that attract Twitter users is the construction of a new airport, namely Kertajati Airport, which has some problems with airport activities, such as the small number of visitors, lonely conditions of the airport, and decreased number of routes. This study aims to find out Twitter user sentiments towards Kertajati Airport in West Java to know the quality of Kertajati Airport. The method used in this study is sentiment analysis by looking at the calculation of how many positive and negative sentiment have been obtained with the most result so it can reflect the quality of Kertajati Airport and then there is a word cloud to see the spread of word related to sentiment. The results of this study indicate that the quality of the Kertajati Airport cannot be said to be good because the results of the sentiment analysis found that negative sentiments have more percentages than positive sentiments

2020 ◽  
Vol 9 (2) ◽  
pp. 161
Author(s):  
Komang Dhiyo Yonatha Wijaya ◽  
Anak Agung Istri Ngurah Eka Karyawati

During this pandemic, social media has become a major need as a means of communication. One of the social medias used is Twitter by using messages referred to as tweets. Indonesia currently undergoing mass social distancing. During this time most people use social media in order to spend their idle time However, sometimes, this result in negative sentiment that used to insult and aimed at an individual or group. To filter that kind of tweets, a sentiment analysis was performed with SVM and 3 different kernel method. Tweets are labelled into 3 classes of positive, neutral, and negative. The experiments are conducted to determine which kernel is better. From the sentiment analysis that has been performed, SVM linear kernel yield the best score Some experiments show that the precision of linear kernel is 57%, recall is 50%, and f-measure is 44%


Author(s):  
Harshala Bhoir ◽  
K. Jayamalini

Visual sentiment analysis is the way to automatically recognize positive and negative emotions from images, videos, graphics, stickers etc. To estimate the polarity of the sentiment evoked by images in terms of positive or negative sentiment, most of the state-of-the-art works exploit the text associated to a social post provided by the user. However, such textual data is typically noisy due to the subjectivity of the user which usually includes text useful to maximize the diffusion of the social post. Proposed system will extract and employ an Objective Text description of images automatically extracted from the visual content rather than the classic Subjective Text provided by the user. The proposed System will extract three views visual view, subjective text view and objective text view of social media image and will give sentiment polarity positive, negative or neutral based on hypothesis table.


2020 ◽  
Vol 16 (3) ◽  
pp. 273
Author(s):  
Nawang Indah Cahyaningrum ◽  
Danty Welmin Yoshida Fatima ◽  
Wisnu Adi Kusuma ◽  
Sekar Ayu Ramadhani ◽  
Muhammad Rizqi Destanto ◽  
...  

Twitter is one of social media where its user can share many responses for a phenomenon through a tweet. This research used 5000 tweets from Twitter users in Bahasa Indonesia with keyword “RUU KUHP(Draft Law of KUHP)” from 16th of September until 22nd of September 2019. That tweets were processed using Rstudio software with sentiment analysis that is one of Text Mining methods. This research aims to classify Twitter users’ responses to RUU KUHP to be negative sentiment, poisitive negative, and neutral. Also, this research also aims to know about topics’ frequencies that were related to RUU KUHP through visualization with bar plot and also wordcloud. This research also aims to know words that are associated with the most frequent words. Form this research, can be known that Twitter users’ responses to RUU KUHP tend to have neutral sentiment that means they did not take side between agreeing or disagreeing. From this research, also can be known about 10 most frequent words, there are kpk, tunda, dpr, pasal, kesal, jokowi, presiden, masuk, ya, and sahkan. Beside that, can be known the other words that are associated with them and also their probability.


2020 ◽  
Vol 6 (2) ◽  
pp. 204-212
Author(s):  
Taopik Hidayat ◽  
Rangga Pebrianto ◽  
Risca Lusiana Pratiwi ◽  
Windu Gata ◽  
Daniati Uki Eka Saputri

Abstract: Twitter is one of the social media with the number of users who reach millions of users. The number of Twitter users in 2019 increased by 17 percent in 2018 to 145 million users with a variety of good both positive and bad. The negative impacts that occur such as the spread of status, images, and videos that affect pornography especially among freedom groups. Homosexuals are sexually oriented people who like the same sex that occurs in men, the rejection often experienced by men makes one of the reasons intellectuals use Twitter social media to show their personal relationships, open to each other, socializing with same sex, looking for conversation, to become a place to find a partner. The purpose of this study is to determine the positive and negative sentiments to determine the level of accuracy of intellectual pornography tweets in Indonesia from data taken from Twitter tweets by using the TF-IDF and k-NN methods. The results of this study get an accuracy value of 88.25% containing pornography and the remaining 11.75% not containing pornography will contain news, news, and other information.Keywords: homosexual, sentiment analysis, twitterAbstrak: Twitter merupakan salah satu media sosial dengan jumlah pengguna mencapai jutaan pengguna. Jumlah pengguna Twit-ter pada tahun 2019 dicatat meningkat 17 persendari tahun 2018 menjadi 145 juta pengguna dengan berbagai dampak baik dampak positif maupun dampak negatif. Dampak negatif yang ditimbulkannya seperti penyebaran status, gambar, dan video yang bersifat pornografi khsusunya di kalangan kaum homoseksual. Homoseksual merupakan orang yang berorientasi seksual sebagai penyuka sesama jenis yang terjadi pada kaum pria, Penolakan yang sering dialami kaum homoseksual men-jadikan salah satu alasan kaum homoseksual menggunakan media sosial Twitter untuk menunjukkan identitas diri mereka, saling terbuka, bersosialisasi dengan sesama jenis, mencari penghasilan, hingga menjadi ajang pencarian pasangan. Tujuan dari penelitian ini adalah untuk mengetahui sentimen positif dan negatif untuk mengetahui tingkat akurasi terhadap tweet pornografi kaum homoseksual di Indonesia dari data yang diambil dari tweet Twitter dengan menggunakan metode TF-IDF dan k-NN. Hasil penelitian ini mendapatkan nilai accuracy sebesar 88,25% mengandung unsur pornografi dan sisanya sebesar 11,75 tidak mengandung unsur pornografi akan tetapi berisi iklan, berita, dan informasi lainnya.Kata kunci: homoseksual, sentimen analisis, twitter


Online users create their profiles on numerous social platforms to get benefits of various types of social media content. During online profile creation, the user selects a username and feeds his/her personal details like name, location, email, etc. As different social networking services acquire common personal attributes of the same user and present them in a variety of formats. To understand the availability and similarity of personal attributes across various social networking services, we propose a method that uses the different distance measuring algorithms to determine the display-name similarity across social networks. From the experimental results, it is found that at least twenty percent GooglePlus-Facebook and Facebook-Twitter users select the same display name, while forty five percent Google and Twitter user select identical name across both the social networks.


2020 ◽  
Vol 4 (3) ◽  
pp. 650
Author(s):  
Rian Tineges ◽  
Agung Triayudi ◽  
Ira Diana Sholihati

In the year 2018, 18.9% of the population in Indonesia mentioned that the main reason for their use of the Internet is social media. One of the social media with an active user of 6.43 million users is Twitter. Based on the surge of information published via Twitter, it is possible that such information may contain the user's opinions on an object, such objects may be events around the community such as a product or service. This makes the company use Twitter as a medium to disseminate information. An example is an Internet Service Provider (ISP) such as Indihome. Through Twitter, users can discuss each other's complaints or satisfaction with Indihome's services. It takes a method of sentiment analysis to understand whether the textual data includes negative opinions or positive opinions. Thus, the authors use the Support Vector Machine (SVM) method in sentiment analysis on the opinions of the Indihome service user on Twitter, with the aim of obtaining a sentiment classification model using SVM, and to know how much accuracy the SVM method generates, which is applied to sentiment analysis, and to see how satisfied the Indihome service users are based on Twitter. After testing with SVM method The result is accuracy 87%, precision 86%, recall 95%, error rate 13%, and F1-score 90%


Author(s):  
Katarzyna ZAWIERUCHA ◽  

Purpose: The article focuses on defining the concept of mobile technology and social media and presenting the novum aspects most affecting the social reality. The aim of the article is to emphasize the importance of mobile technologies and the continuous development of information technology in terms of the importance of social media. As a result, the article presents opportunities and threats to the world resulting from the use of the described technologies and gives an opinion on the rapid development in this aspect. Design/methodology/approach: The considerations and analysis made it possible to identify the causes of excessive use of mobile technologies and to present the most commonly used types of social media. Findings: The article shows the essence of mobile technologies and the likely direction of development in this aspect. The article defines the social reality in the context of social media and analyzes the modern world determined by technologies. The information contained in the article shows the huge increase in the importance of mobile technologies at the expense of real life and shows the priority of general improvement of the quality of life in favor of addiction and manipulation. Originality/value: The information contained in the article defines the concept of mobile technologies, social media and social reality, presents selected issues related to these aspects and indicates the direction of world development in the context of the issues described.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Yi Zhao ◽  
Haixu Xi ◽  
Chengzhi Zhang

AbstractCoronavirus disease 2019 (COVID-19) pandemic-related information are flooded on social media, and analyzing this information from an occupational perspective can help us to understand the social implications of this unprecedented disruption. In this study, using a COVID-19-related dataset collected with the Twitter IDs, we conduct topic and sentiment analysis from the perspective of occupation, by leveraging Latent Dirichlet Allocation (LDA) topic modeling and Valence Aware Dictionary and sEntiment Reasoning (VADER) model, respectively. The experimental results indicate that there are significant topic preference differences between Twitter users with different occupations. However, occupation-linked affective differences are only partly demonstrated in our study; Twitter users with different income levels have nothing to do with sentiment expression on covid-19-related topics.


2021 ◽  
Vol 9 (3) ◽  
pp. 443
Author(s):  
Prasetyo Adi Utomo ◽  
AAIN Eka Karyawati

During this pandemic, social media has become a major need as a means of communication. One of the social media used is Twitter by using messages referred to as tweets. In Indonesia itself, there are various tribes, religions, and races in their society so the use of these names is also become commonly used. However, sometimes, the use of the name is followed by negative sentiment that used to insult and aimed at an individual or group. To filter that kind of tweets, a sentiment analysis was performed with LIWC method that divides tweets into 3 classes of positive, neutral, and negative. From the sentiment analysis that has been performed, the average score for precision is 69.62%, recall is 70%, and f-measure is 69.81%


2020 ◽  
Author(s):  
Yankun Gao ◽  
Zidian Xie ◽  
Dongmei Li

BACKGROUND Previous studies indicated electronic cigarette users might be more vulnerable to COVID-19 infections and could develop more severe symptoms once contracted COVID-19 due to their impaired immune responses to virus infections. Social media has been widely used to express users’ responses to the COVID-19 pandemic. OBJECTIVE We aimed to examine the responses of electronic cigarette Twitter users to the COVID-19 pandemic using Twitter data. METHODS The COVID-19 dataset contained COVID-19-related Twitter posts (tweets) between March 5th, 2020 and April 3rd, 2020. Ecig group included Twitter users who didn’t have commercial accounts but ever retweeted e-cigarette promotion posts between May 2019 and August 2019. Twitter users who didn’t post or retweet any e-cigarette-related tweets were defined as Non-Ecig group. Sentiment analysis was conducted to compare sentiment scores towards the COVID-19 pandemic between both groups. Topic modeling was used to compare the main topics discussed between the two groups. RESULTS The US COVID-19 dataset consisted of 1,112,558 COVID-19-related tweets from 15,657 unique Twitter users in the Ecig group and 9,789,584 COVID-19-related tweets from 2,128,942 unique Twitter users in the Non-Ecig group. Sentiment analysis showed that the Ecig group have more negative sentiment scores than the Non-Ecig group. Results from topic modeling indicated the Ecig group had more concern about COVID-19 related death, while the Non-Ecig group cared more about the government’s responses to the COVID-19 pandemic. CONCLUSIONS Electronic cigarette Twitter users has more concern towards the COVID-19 pandemic. Twitter is a useful tool to timely monitor public responses to the COVID-19 pandemic.


Sign in / Sign up

Export Citation Format

Share Document