A Machine Learning Algorithm to Predict Hyperglycemic Cases Induced by PD-1/PD-L1 Inhibitors in the Real World (Preprint)

2021 ◽  
Author(s):  
Jincheng Yang

BACKGROUND Diabetes mellitus and cancer are amongst the leading causes of deaths worldwide; hyperglycemia plays a major contributory role in neoplastic transformation risk. Support Vector Machine (SVM) is a type of supervised learning method which analyzes data and recognizes patterns, mainly used for statistical classification and regression. OBJECTIVE From reported adverse events of PD-1 or PD-L1 (programmed death 1 or ligand 1) inhibitors in post-marketing monitoring, we aimed to construct an effective machine learning algorithm to predict the probability of hyperglycemic adverse reaction from PD-1/PD-L1 inhibitors treated patients efficiently and rapidly. METHODS Raw data was downloaded from US Food and Drug Administration Adverse Event Reporting System (FDA FAERS). Signal of relationship between drug and adverse reaction based on disproportionality analysis and Bayesian analysis. A multivariate pattern classification of SVM was used to construct classifier to separate adverse hyperglycemic reaction patients. A 10-fold-3-time cross validation for model setup within training data (80% data) output best parameter values in SVM within R software. The model was validated in each testing data (20% data) and two total drug data, with exactly predictor parameter variables: gamma and nu. RESULTS Total 95918 case files were downloaded from 7 relevant drugs (cemiplimab, avelumab, durvalumab, atezolizumab, pembrolizumab, ipilimumab, nivolumab). The number-type/number-optimization method was selected to optimize model. Both gamma and nu values correlated with case number showed high adjusted r2 in curve regressions (both r2 >0.95). Indexes of accuracy, F1 score, kappa and sensitivity were greatly improved from the prediction model in training data and two total drug data. CONCLUSIONS The SVM prediction model established here can non-invasively and precisely predict occurrence of hyperglycemic adverse drug reaction (ADR) in PD-1/PD-L1 inhibitors treated patients. Such information is vital to overcome ADR and to improve outcomes by distinguish high hyperglycemia-risk patients, and this machine learning algorithm can eventually add value onto clinical decision making. CLINICALTRIAL N/A

2020 ◽  
Author(s):  
Jincheng Yang ◽  
Weilong Lin ◽  
Liming Shi ◽  
Ming Deng ◽  
Wenjing Yang

Abstract Background: Diabetes mellitus and cancer are amongst the leading causes of deaths worldwide; hyperglycemia plays a major contributory role in neoplastic transformation risk. From reported adverse events of PD-1 or PD-L1 (programmed death 1 or ligand 1) inhibitors in post-marketing monitoring, we aimed to construct an effective machine learning algorithm to predict the probability of hyperglycemic adverse reaction from PD-1/PD-L1 inhibitors treated patients efficiently and rapidly. Methods: Raw data was downloaded from US Food and Drug Administration Adverse Event Reporting System (FDA FAERS). Signal of relationship between drug and adverse reaction based on disproportionality analysis and Bayesian analysis. A multivariate pattern classification of Support Vector Machine (SVM) was used to construct classifier to separate adverse hyperglycemic reaction patients. A 10-fold-3-time cross validation for model setup within training data (80% data) output best parameter values in SVM within R software. The model was validated in each testing data (20% data) and two total drug data, with exactly predictor parameter variables: gamma and nu. Results: Total 95918 case files were downloaded from 7 relevant drugs (cemiplimab, avelumab, durvalumab, atezolizumab, pembrolizumab, ipilimumab, nivolumab). The number-type/number-optimization method was selected to optimize model. Both gamma and nu values correlated with case number showed high adjusted r2 in curve regressions (both r2 >0.95). Indexes of accuracy, F1 score, kappa and sensitivity were greatly improved from the prediction model in training data and two total drug data. Conclusions: The SVM prediction model established here can non-invasively and precisely predict occurrence of hyperglycemic adverse drug reaction (ADR) in PD-1/PD-L1 inhibitors treated patients. Such information is vital to overcome ADR and to improve outcomes by distinguish high hyperglycemia-risk patients, and this machine learning algorithm can eventually add value onto clinical decision making.


Author(s):  
Sheela Rani P ◽  
Dhivya S ◽  
Dharshini Priya M ◽  
Dharmila Chowdary A

Machine learning is a new analysis discipline that uses knowledge to boost learning, optimizing the training method and developing the atmosphere within which learning happens. There square measure 2 sorts of machine learning approaches like supervised and unsupervised approach that square measure accustomed extract the knowledge that helps the decision-makers in future to require correct intervention. This paper introduces an issue that influences students' tutorial performance prediction model that uses a supervised variety of machine learning algorithms like support vector machine , KNN(k-nearest neighbors), Naïve Bayes and supplying regression and logistic regression. The results supported by various algorithms are compared and it is shown that the support vector machine and Naïve Bayes performs well by achieving improved accuracy as compared to other algorithms. The final prediction model during this paper may have fairly high prediction accuracy .The objective is not just to predict future performance of students but also provide the best technique for finding the most impactful features that influence student’s while studying.


A large volume of datasets is available in various fields that are stored to be somewhere which is called big data. Big Data healthcare has clinical data set of every patient records in huge amount and they are maintained by Electronic Health Records (EHR). More than 80 % of clinical data is the unstructured format and reposit in hundreds of forms. The challenges and demand for data storage, analysis is to handling large datasets in terms of efficiency and scalability. Hadoop Map reduces framework uses big data to store and operate any kinds of data speedily. It is not solely meant for storage system however conjointly a platform for information storage moreover as processing. It is scalable and fault-tolerant to the systems. Also, the prediction of the data sets is handled by machine learning algorithm. This work focuses on the Extreme Machine Learning algorithm (ELM) that can utilize the optimized way of finding a solution to find disease risk prediction by combining ELM with Cuckoo Search optimization-based Support Vector Machine (CS-SVM). The proposed work also considers the scalability and accuracy of big data models, thus the proposed algorithm greatly achieves the computing work and got good results in performance of both veracity and efficiency.


In today’s world social media is one of the most important tool for communication that helps people to interact with each other and share their thoughts, knowledge or any other information. Some of the most popular social media websites are Facebook, Twitter, Whatsapp and Wechat etc. Since, it has a large impact on people’s daily life it can be used a source for any fake or misinformation. So it is important that any information presented on social media should be evaluated for its genuineness and originality in terms of the probability of correctness and reliability to trust the information exchange. In this work we have identified the features that can be helpful in predicting whether a given Tweet is Rumor or Information. Two machine learning algorithm are executed using WEKA tool for the classification that is Decision Tree and Support Vector Machine.


2019 ◽  
Vol 8 (07) ◽  
pp. 24680-24782
Author(s):  
Manisha Bagri ◽  
Neha Aggarwal

By 2020 around 25-50 billion devices are likely to be connected to the internet. Due to this new development, it gives rise to something called Internet of Things (IoT). The interconnected devices can generate and share data over a network. Machine Learning plays a key role in IoT to handle the vast amount of data. It gives IoT and devices a brain to think, which is often called as intelligence. The data can be feed to machines for learning patterns, based on training the machines can identify to predict for the future. This paper gives a brief explanation of IoT. This paper gives a crisp explanation of machine learning algorithm and its types. However, Support Vector Machine (SVM) is explained in details along with its merits and demerits. An algorithm is also proposed for weather prediction using SVM for IoT.


2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


The Analyst ◽  
2018 ◽  
Vol 143 (9) ◽  
pp. 2066-2075 ◽  
Author(s):  
Y. Rong ◽  
A. V. Padron ◽  
K. J. Hagerty ◽  
N. Nelson ◽  
S. Chi ◽  
...  

We develop a simple, open source machine learning algorithm for analyzing impedimetric biosensor data using a mobile phone.


Sign in / Sign up

Export Citation Format

Share Document