scholarly journals Machine Learning for Internet of Things

2019 ◽  
Vol 8 (07) ◽  
pp. 24680-24782
Author(s):  
Manisha Bagri ◽  
Neha Aggarwal

By 2020 around 25-50 billion devices are likely to be connected to the internet. Due to this new development, it gives rise to something called Internet of Things (IoT). The interconnected devices can generate and share data over a network. Machine Learning plays a key role in IoT to handle the vast amount of data. It gives IoT and devices a brain to think, which is often called as intelligence. The data can be feed to machines for learning patterns, based on training the machines can identify to predict for the future. This paper gives a brief explanation of IoT. This paper gives a crisp explanation of machine learning algorithm and its types. However, Support Vector Machine (SVM) is explained in details along with its merits and demerits. An algorithm is also proposed for weather prediction using SVM for IoT.

A large volume of datasets is available in various fields that are stored to be somewhere which is called big data. Big Data healthcare has clinical data set of every patient records in huge amount and they are maintained by Electronic Health Records (EHR). More than 80 % of clinical data is the unstructured format and reposit in hundreds of forms. The challenges and demand for data storage, analysis is to handling large datasets in terms of efficiency and scalability. Hadoop Map reduces framework uses big data to store and operate any kinds of data speedily. It is not solely meant for storage system however conjointly a platform for information storage moreover as processing. It is scalable and fault-tolerant to the systems. Also, the prediction of the data sets is handled by machine learning algorithm. This work focuses on the Extreme Machine Learning algorithm (ELM) that can utilize the optimized way of finding a solution to find disease risk prediction by combining ELM with Cuckoo Search optimization-based Support Vector Machine (CS-SVM). The proposed work also considers the scalability and accuracy of big data models, thus the proposed algorithm greatly achieves the computing work and got good results in performance of both veracity and efficiency.


In today’s world social media is one of the most important tool for communication that helps people to interact with each other and share their thoughts, knowledge or any other information. Some of the most popular social media websites are Facebook, Twitter, Whatsapp and Wechat etc. Since, it has a large impact on people’s daily life it can be used a source for any fake or misinformation. So it is important that any information presented on social media should be evaluated for its genuineness and originality in terms of the probability of correctness and reliability to trust the information exchange. In this work we have identified the features that can be helpful in predicting whether a given Tweet is Rumor or Information. Two machine learning algorithm are executed using WEKA tool for the classification that is Decision Tree and Support Vector Machine.


2021 ◽  
Author(s):  
jorge cabrera Alvargonzalez ◽  
Ana Larranaga Janeiro ◽  
Sonia Perez ◽  
Javier Martinez Torres ◽  
Lucia martinez lamas ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been and remains one of the major challenges humanity has faced thus far. Over the past few months, large amounts of information have been collected that are only now beginning to be assimilated. In the present work, the existence of residual information in the massive numbers of rRT-PCRs that tested positive out of the almost half a million tests that were performed during the pandemic is investigated. This residual information is believed to be highly related to a pattern in the number of cycles that are necessary to detect positive samples as such. Thus, a database of more than 20,000 positive samples was collected, and two supervised classification algorithms (a support vector machine and a neural network) were trained to temporally locate each sample based solely and exclusively on the number of cycles determined in the rRT-PCR of each individual. Finally, the results obtained from the classification show how the appearance of each wave is coincident with the surge of each of the variants present in the region of Galicia (Spain) during the development of the SARS-CoV-2 pandemic and clearly identified with the classification algorithm.


The Analyst ◽  
2018 ◽  
Vol 143 (9) ◽  
pp. 2066-2075 ◽  
Author(s):  
Y. Rong ◽  
A. V. Padron ◽  
K. J. Hagerty ◽  
N. Nelson ◽  
S. Chi ◽  
...  

We develop a simple, open source machine learning algorithm for analyzing impedimetric biosensor data using a mobile phone.


Sensors ◽  
2019 ◽  
Vol 19 (14) ◽  
pp. 3115 ◽  
Author(s):  
Yang Wei ◽  
Hao Wang ◽  
Kim Fung Tsang ◽  
Yucheng Liu ◽  
Chung Kit Wu ◽  
...  

Improperly grown trees may cause huge hazards to the environment and to humans, through e.g., climate change, soil erosion, etc. A proximity environmental feature-based tree health assessment (PTA) scheme is proposed to prevent these hazards by providing guidance for early warning methods of potential poor tree health. In PTA development, tree health is defined and evaluated based on proximity environmental features (PEFs). The PEF takes into consideration the seven surrounding ambient features that strongly impact tree health. The PEFs were measured by the deployed smart sensors surrounding trees. A database composed of tree health and relative PEFs was established for further analysis. An adaptive data identifying (ADI) algorithm is applied to exclude the influence of interference factors in the database. Finally, the radial basis function (RBF) neural network (NN), a machine leaning algorithm, has been identified as the appropriate tool with which to correlate tree health and PEFs to establish the PTA algorithm. One of the salient features of PTA is that the algorithm can evaluate, and thus monitor, tree health remotely and automatically from smart sensor data by taking advantage of the well-established internet of things (IoT) network and machine learning algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiaxuan Fei ◽  
Qigui Yao ◽  
Mingliang Chen ◽  
Xiangqun Wang ◽  
Jie Fan

The construction of power Internet of things is an important development direction for power grid enterprises. Although power Internet of things is a kind of network, it is denser than the ordinary Internet of things points and more complex equipment types, so it has higher requirements for network security protection. At the same time, due to the special information perception and transmission mode in the Internet of things, the information transmitted in the network is easy to be stolen and resold, and traditional security measures can no longer meet the security protection requirements of the new Internet of things devices. To solve the privacy leakage and security attack caused by the illegal intrusion in the network, this paper proposes to construct a device portrait for terminal devices in the power Internet of things and detect abnormal traffic in the network based on device portrait. By collecting traffic data in the network environment, various network traffic characteristics are extracted, and abnormal traffic is analyzed and identified by the machine learning algorithm. By collecting the traffic data in the network environment, the features are extracted from the physical layer, network layer, and application layer of the message, and the device portrait is generated by a machine learning algorithm. According to the established attack mode, the corresponding traffic characteristics are analyzed, and the detection of abnormal traffic is achieved by comparing the attack traffic characteristics with the device portrait. The experimental results show that the accuracy of this method is more than 90%.


2021 ◽  
Author(s):  
Kaiho Cheung ◽  
Ishmael Rico ◽  
Tao Li ◽  
Yu Sun

In recent years the popularity of anime has steadily grown. Similar to other forms of media consumers often face a pressing issue: “What do I watch next?”. In this study, we thoroughly examined the current method of solving this issue and determined that the learning curve to effectively utilize the current solution is too high. We developed a program to ensure easier answers to the issue. The program uses a Python-based machine learning algorithm from ScikitLearn and data from My Animelist to create an accurate model that delivers what consumers want, good recommendations [9]. We also carried out different experiments with several iterations to study the difference in accuracy when applying different factors. Through these tests, we have successfully created a reliable Support vector machine model with 57% accuracy in recommending users what to watch.


Sign in / Sign up

Export Citation Format

Share Document