Enhanced Production of Ligninolytic Enzymes by Ganoderma lucidum IBL-06 Using Lignocellulosic Agricultural Wastes

Author(s):  
Muhammad Asgher ◽  
Yasir Sharif ◽  
H.N. Bhatti

An indigenous novel strain of Ganoderma lucidum IBL-06 was investigated for the production of ligninolytic enzymes including lignin peroxidase (LiP), manganese peroxidase (MnP) and laccase using different lignocellulosic substrates in still culture solid-state fermentation (SSF). The fermentation flasks were inoculated and incubated at 35°C for 14 days. Samples were harvested after every 48 h to study the profile of ligninolytic enzymes produced by the fungus on different substrates. Maximum enzyme activities were noted on 10th day of incubation on rice straw. Ganoderma lucidum IBL-06 produced highest activities of lignin peroxidase (LiP) among the lignolytic enzymes. By optimizing the SSF process, maximum activities of LiP (2185 IU/ml), MnP (1972 IU/ml) and laccase (338 IU/ml) were achieved after three days incubation of rice straw at pH 4.5; temperature, 35°C; moisture, 75% and inoculum size, 6 ml, using fructose as carbon source, urea as nitrogen source, Tween-80 as surfactant and veratryl alcohol as mediator.

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
K. Y. Usha ◽  
K. Praveen ◽  
B. Rajasekhar Reddy

The white rot fungi Stereum ostrea displayed a wide diversity in their response to supplemented inducers, surfactants, and copper sulphate in solid state fermentation. Among the inducers tested, 0.02% veratryl alcohol increased the ligninolytic enzyme production to a significant extent. The addition of copper sulphate at 300 μM concentration has a positive effect on laccase production increasing its activity by 2 times compared to control. Among the surfactants, Tween 20, Tween 80, and Triton X 100, tested in the studies, Tween 80 stimulated the production of ligninolytic enzymes. Biosorption of dyes was carried out by using two lignocellulosic wastes, rice bran and wheat bran, in 50 ppm of remazol brilliant blue and remazol brilliant violet 5R dyes. These dye adsorbed lignocelluloses were then utilized for the production of ligninolytic enzymes in solid state mode. The two dye adsorbed lignocelluloses enhanced the production of laccase and manganese peroxidase but not lignin peroxidase.


2021 ◽  
Vol 13 (2) ◽  
pp. 243-249
Author(s):  
Yohanes Bernard Subowo ◽  
Arwan Sugiharto

Some species of Basidiomycetes, specifically white rot groups, produce three ligninolytic enzymes, namely, Lignin Peroxidase (LiP), Manganese Peroxidase (MnP) and Laccase (Lac), which have low activity in degrading Palm Oil Mill Effluent (POME). The research objective was to obtain the data on the ability of the Coltricia cinnamomea to produce LiP, MnP, and Lac enzymes to degrade POME. This research also studied the effect of sucrose, alcohol, veratryl alcohol, CuSO4 and ZnSO4,as inducers. Isolates of Coltricia cinnamomea, which were stored in a PDA media at -20℃ were obtained from the Microbiology section of the Research Center for Biology (LIPI). Furthermore, the growth media used were DM, Bean sprout Extract (TE) and PDB. The result indicated that PDB is the most suitable growth media for the production of ligninolytic enzymes, because in this medium these enzymes showed the highest activity. It was also observed that sucrose increased the laccase activity by 40.80%. Furthermore, Coltricia cinnamomea was able to reduce the concentration of Poly R-478 by 60.74%, after the addition of ZnSO4. In addition, it degraded and decreased the color and COD of POME, by 72.63% and 91.19% respectively, after the addition of veratryl alcohol, and incubation for 10 days. Therefore, this fungus can be used to degrade POME in order to prevent environmental pollution. Coltricia cinnamomea has not been used for POME degradation. By using Coltricia cinnamomea, we  obtained new data regarding the activity of laccase and its ability to degrade POME. 


2016 ◽  
Vol 18 (12) ◽  
pp. 1141-1149 ◽  
Author(s):  
Thais Almeida de Menezes ◽  
Aline Simoes da Rocha Bispo ◽  
Maria Gabriela Bello Koblitz ◽  
Luciana Porto de Souza Vandenberghe ◽  
Helio Mitoshi Kamida ◽  
...  

Author(s):  
Ismat Bibi ◽  
Haq Nawaz Bhatti

This study deals with purification and characterization of lignin peroxidase (LiP) isolated from Agaricus bitorqus A66 during decolorization of NOVASOL Direct Black dye. A laboratory scale experiment was conducted for maximum LiP production under optimal conditions. Purification & fractionation of LiP was performed on DEAE-Sepharose ion exchange chromatography followed by Sephadex G-50 gel filtration. The purified LiP has a specific activity of 519 U/mg with 6.73% activity recover. The optimum pH and temperature of purified LiP for the oxidation of veratryl alcohol were 6.8 and 45 °C, respectively. Michaelis-Menten kinetic constants (Vmax and Km) were determined using different concentrations of veratryl alcohol (1-35 mM). The Km and Vmax were 16.67 mM and 179.2 U/mL respectively, for veratryl alcohol oxidation as determined from the Lineweaver-Burk plot. Thermal inactivation studies were carried out at different temperatures to check the thermal stability of the enzyme. Enthalpy of activation decreased where Free energy of activation for thermal denaturation increased at higher temperatures. A possible explanation for the thermal inactivation of LiP at higher temperatures is also discussed.


2021 ◽  
Vol 7 (9) ◽  
pp. 762
Author(s):  
Jina Baik ◽  
Anwesha Purkayastha ◽  
Kyung Hye Park ◽  
Taek Jin Kang

Melanin pigmentation in the human skin results from complicated cellular mechanisms that remain to be entirely understood. Uneven melanin pigmentation has been counteracted by inhibiting synthesis or transfer of melanin in the skin. Recently, an enzymatic approach has been proposed, wherein the melanin in the skin is decolorized using lignin peroxidase. However, not many enzymes are available for decolorizing melanin; the most studied one is lignin peroxidase derived from a lignin degrading fungus, Phanerochaete chrysosporium. Our current study reveals that versatile peroxidase from Bjerkandera adusta can decolorize synthetic melanin. Melanin decolorization was found to be dependent on veratryl alcohol and hydrogen peroxide, but not on Mn2+. The degree of decolorization reached over 40% in 10 min at 37 °C and a pH of 4.5. Optimized storage conditions were slightly different from those for the reaction; crude enzyme preparation was the most stable at 25 °C at pH 5.5. Since the enzyme rapidly lost its activity at 50 °C, stabilizers were screened. As a result, glycerol, a major component in several cosmetic formulations, was found to be a promising excipient. Our results suggest that B. adusta versatile peroxidase can be considered for future cosmetic applications aimed at melanin decolorization.


2006 ◽  
Vol 58 (3) ◽  
pp. 179-182 ◽  
Author(s):  
Jelena Vukojevic ◽  
Mirjana Stajic ◽  
Sonja Duletic-Lausevic ◽  
Jasmina Simonic

The effect of initial medium pH on biomass, extracellular and intracellular polysaccharide, and ligninolytic enzyme production by Ganoderma lucidum was investigated at different pH values after 7 and 14 days of cultivation. Maximal production of biomass was recorded at pH 4.5 and 5.0; maximal production of extracellular polysaccharides at pH 7.0 and 3.0; and maximal production of intracellular polysaccharides at pH 7.0 and 5.5. Ligninolytic enzymes were not produced at any pH of the medium. Maximal biomass production was obtained on the 11th day of cultivation; maximal extracellular polysaccharide production on the 7th day; and maximal intracellular polysaccharide production on the 6th and 10th day of cultivation. .


2018 ◽  
Vol 14 (4) ◽  
pp. 721-726
Author(s):  
Nguyen Thi Hong Lien ◽  
Nguyen Van Hieu ◽  
Luong Thi Hong ◽  
Hy Tuan Anh ◽  
Phan Thi Hong Thao

Wood-rotting fungi represent an important component of forest ecosystems. Among them, white-rot fungi are the most efficient lignin degraders. Biopulping using white-rot fungi in pretreatment of the materials, is one of the solutions to overcome disadvantages of traditional production methods. Today, the isolation and screening of lignin degrading fungi capable for application in biopulping are of keen interest in Vietnam. The use of non–wood, plant fibres in pulp and paper industry, special, agricultural residuces such as rice and wheat straw, sugarcane baggase, cornstalks etc is the new production toward, potential, serving sustainable development. The fungus CP9, which possessed high ligninolytic activity, was identified and studied in pretreatment of rice straw for biopulping. The fruiting bodies of strain CP9 were effuse on trunk. The hymenium was porous and brown white with short tubes, the white mycelia penetrated wood block. The colony was off-white, blossom, irregularly circular. The mycelia were thick and closely bound together. Beside lignin, this fungus could degrade other substrates such as casein, carboxymethyl cellulose and starch. Biological and morphological characteristics of the fungus CP9 suggested its placement in subdivision Basidiomycota. Combined with the results of phylogenetic analysis, which showed 99% similarity of the fungus with species Leiotrametes lactinea, our strain was named as Leiotrametes lactinea CP9. This fungus could grow well on rice straw under solid state fermentation. Pretreatment of rice straw using L. lactinea CP9 was based on the activity of fungal lignin peroxidase and laccase. After 20 days, the residual enzyme activity was of 21.6 and 18.4 nkat/g material for lignin peroxidase and laccase, respectively. Pretreatment significantly improved the quality of straw, as lignin loss of 38% while cellulosic fibers were comparatively well preserved.


2018 ◽  
Vol 293 (13) ◽  
pp. 4702-4712 ◽  
Author(s):  
Carl J. Houtman ◽  
Eranda Maligaspe ◽  
Christopher G. Hunt ◽  
Elena Fernández-Fueyo ◽  
Angel T. Martínez ◽  
...  

2021 ◽  
Vol 16 (7) ◽  
pp. 130-135
Author(s):  
Shruti Shukla ◽  
Anjali Padhiar

Lignin peroxidase belongs to ligninolytic enzyme group and is one of the industrial important enzymes as it has wide applications in different sectors. Lignin peroxidase is produced by submerged fermentation process which requires optimization of physical and chemical parameters to achieve higher activity and make the process cost effective. The present study aimed at the optimization of physical as well chemical parameters of production medium. The optimization includes physical parameter such as incubation time, inoculum size, temperature, pH, RPM (Rotation per minute) while chemical parameters include carbon source, nitrogen source and different mineral elements. Form the optimization study, it was observed that highest lignin peroxidase production was achieved after 72 hours of incubation at temperature 300C, pH 6 and RPM 120. Optimization of chemical parameters reveals that incorporation of sodium nitrite (9g/L) in the media gave significant increase in enzyme activity. It was found that the maximum productivity achieved after optimization was 2214 U/ml which was four times higher than process without optimized parameters.


Sign in / Sign up

Export Citation Format

Share Document