Inferential Control of a Distillation Column Using an Online Estimator

2008 ◽  
Vol 3 (1) ◽  
Author(s):  
Vijander Singh ◽  
Indra Gupta ◽  
Hari Om Gupta

The time to measure and maintain distillate quality in the presence of disturbances is the main objective of the distillation process. To maintain the product quality, a suitable tray temperature is kept constant with the help of a control strategy near its set point. As the controlled variables cannot be measured online easily due to measurement lags and sampling delays, the secondary measurement techniques are used to estimate the distillate quality by adjusting the values of manipulated variables (inferential control). This paper presents an inferential control scheme for a distillation column using an Ethernet-based data acquisition system to provide a standard online estimator. In the present scheme the distillation parameters are acquired from a client PC connected to the network and the distillate composition is estimated online by a developed ANN-based estimator. The above estimator is used for an inferential control strategy to control distillate composition. The inferential control scheme is exercised for various disturbances and the effect of the disturbances is observed on distillate quality.

2020 ◽  
Vol 42 (12) ◽  
pp. 2221-2233 ◽  
Author(s):  
Yun Cheng ◽  
Zengqiang Chen ◽  
Mingwei Sun ◽  
Qinglin Sun

Although the heat integrated distillation is an energy-efficient and environment-friendly separation technology, it has not been commercialized. One of the reasons is that the nonlinear dynamics and the interactions between various control loops have limited the performance of the traditional control strategy. To achieve a high-purity product concentration, a dynamic decoupling control strategy based on active disturbance rejection control (ADRC) is proposed. The effects of interactions, uncertainties and external disturbances can be estimated and rejected by using extended state observer. Considering the constraints on manipulated variables, an optimized ADRC is designed for the first-order system. Moreover, a concentration observer based on a nonlinear wave model is formulated to reduce the number of sensors. In the simulation research, the related internal model control (IMC), multi-loop ADRC and model predictive control (MPC) are compared with the proposed control scheme. The simulation results demonstrate the advantages of the proposed control scheme on tight control, decoupling performance and disturbance rejection for the high-purity heat integrated distillation column.


2021 ◽  
Author(s):  
Mingda Miao ◽  
Xueshan Gao ◽  
Jun Zhao ◽  
Peng Zhao

Abstract Background: In response to the current problem of low intelligence of mobile lower limb motor rehabilitation aids, this article proposes an intelligent control scheme based on human movement behavior in order to control the rehabilitation robot to follow the patient's movement. Methods: Firstly, a multi-sensor data acquisition system is designed according to the motion characteristics of human body. By analyzing and processing the motion data, the change law of human center of gravity and behavior intention are obtained, and the behavior intention of human is used as the control command of the robot following motion. In order to achieve the goal of the rehabilitation robot following human motion, an adaptive radial basis function neural network (ARBFNN) sliding mode controller is designed based on the robot dynamic model. The controller can reduce the impact of fluctuations in the human center of gravity on changes in the parameters of the robot control system, and enhance the adaptability of the system to other disturbance factors, and improve the accuracy of following human motion. Finally, the motion following experiment of the rehabilitation robot is carried out. Results: The experimental results show that the robot can recognize the motion intention of human body, and achieve the training goal of following different subjects to complete straight lines and curves. Conclusions: According to the experimental results, the accuracy of the multi-sensor data acquisition system and control algorithm design is verified, which demonstrates the feasibility of the proposed intelligent control scheme.


Jurnal MIPA ◽  
2013 ◽  
Vol 2 (1) ◽  
pp. 66
Author(s):  
Verna Albert Suoth ◽  
Didik R. Santoso ◽  
Sukir Maryanto

Dalam penelitian ini dikembangkan sebuah sistem akusisi data untuk survei panas bumi. Untuk menghasilkan sistem instrumentasi yang mampu mengukur dan memonitor distribusi suhu bawah permukaan diperlukan sistem akusisi data yang murah dan efesien. Sistem dibangun berbasis jaringan sistem terdistribusi dengan topologi field-bus, menggunakan arsitektur single-master multi-slave. Master merupakan unit pengendali, dibangun berbasiskan sebuah PC yang dilengkapi dengan antarmuka RS-485. Slave merupakan unit sensing, tiap-tiap unit slave dibangun dengan mengintegrasikan sistem array sensor LM35 dengan sistem akuisisi data berbasis mikrokontroler menggunakan AVR ATmega8. Pengolahan data dari hasil pengukuran suhu ini menggunakan satu set komputer dengan perangkat lunak microsoft excel 2010 untuk menghasilkan grafik pada titik pengukuran. Hasil implementasi dari monitoring suhu ini akan mengambarkan distribusi suhu bawah permukaan tanah.A data acquisition system for geothermal survey was developed in this research. Cheap and efficient data acquisition system was required to produce the instrumentation system which was capable to measure and monitor the distribution of subsurface temperature. The system consists of field-bus topology, using single-master multi-slave architecture. Master is a control unit built based on a PC equipped with RS-485 interface. Slave is a sensing unit; each slave is built by integrating array sensor LM35 within AVR ATmega8a microcontroller-based data acquisition system. Measurement techniques included sounding and mapping system by placing four slaves planted in the depth of 2.5 m. Processing of data obtained from temperature measurements was performed using Microsoft Excel 2010 to produce graphics at point of measurement. The results of temperature monitoring will described the distribution of subsurface temperature.


2000 ◽  
Vol 34 (3) ◽  
pp. 272-280 ◽  
Author(s):  
Klaas Kramer ◽  
Hans-Peter Voss ◽  
Joop A. Grimbergen ◽  
Perry A. Mills ◽  
Daniel Huetteman ◽  
...  

This paper describes for the first time the possibility for recording the systolic pressure (SPI, diastolic pressure (DP), and the mean arterial pressure (MAP) as well as the heart rate (HR) and locomotor activity (LA) in freely moving mice, using a commercially available telemetry and data acquisition system. The system comprises a new, small radio-telemetry transmitter implanted in the peritoneal cavity, a receiver board placed underneath the home cage, a multiplexer and a computer-based data acquisition system. The signals from the receiver were consolidated by the multiplexer and were stored and analysed by the computer. The telemetered pressure signals (absolute pressure) were corrected automatically for changes in atmospheric pressure measured by an ambient pressure monitor. The effects of implantation on animal behaviour, and, after the animals had recovered, the effects of handling on the SP, DP, MAP and HR were examined. The radio-telemetry system for recording the SP, DP, MAP and HR provides an accurate and reliable method for monitoring the direct effects of handling on SP, DP, MAP and HR. In addition, by using this new blood pressure (BP) transmitter, we maintain that BP measurements in freely moving mice are more efficient, reliable, and less labour-intensive than the measurement techniques described in the literature thus far.


Sign in / Sign up

Export Citation Format

Share Document