Simultaneous Coke Reduction with Improved Syngas Production during Propane Steam Reforming using Forced CO2 Cycling

2009 ◽  
Vol 4 (5) ◽  
Author(s):  
Feraih S Alenazey ◽  
Chirag Dave ◽  
Said S.E.H. El-Nashaie ◽  
Alfred Susu ◽  
Adesoji A Adesina

Carbon deposition during hydrocarbon steam reforming is often a major cause of pathological reactor performance and catalyst deactivation. In this paper, we report the effect of forced periodic cycling between propane-steam reforming feed and a carbon gasifying agent (CO2) as a novel reactor strategy to both improve product yield (H2 and CO) and catalyst longevity. Experiments were carried out over Co-Ni/Al2O3 catalyst in a fluidized bed reactor. Cycle period, ?, was varied between 5 to 20 mins at 5 different cycle splits, (0.1 ? s ? 0.9). Both H2 and CO formation rates were higher (up to 5-fold and more than 10-fold, respectively) than that attainable under steady-state operation at all periods investigated. In particular, the time-average H2:CO ratio was lower (< 3.0) than the steady-state equivalent for the pure propane steam reforming (14.0), although it increased monotonically with cycle split. Composition cycling with CO2 also improved catalyst stability and longevity compared to steady-state performance at the cycle periods examined. This strategic reactor operation is therefore a potentially useful key to green process engineering in the overall petrochemical plant design to effect greenhouse gas emission reduction.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1875
Author(s):  
Prashanth Reddy Buchireddy ◽  
Devin Peck ◽  
Mark Zappi ◽  
Ray Mark Bricka

Amongst the issues associated with the commercialization of biomass gasification, the presence of tars has been one of the most difficult aspects to address. Tars are an impurity generated from the gasifier and upon their condensation cause problems in downstream equipment including plugging, blockages, corrosion, and major catalyst deactivation. These problems lead to losses of efficiency as well as potential maintenance issues resulting from damaged processing units. Therefore, the removal of tars is necessary in order for the effective operation of a biomass gasification facility for the production of high-value fuel gas. The catalytic activity of montmorillonite and montmorillonite-supported nickel as tar removal catalysts will be investigated in this study. Ni-montmorillonite catalyst was prepared, characterized, and tested in a laboratory-scale reactor for its efficiency in reforming tars using naphthalene as a tar model compound. Efficacy of montmorillonite-supported nickel catalyst was tested as a function of nickel content, reaction temperature, steam-to-carbon ratio, and naphthalene loading. The results demonstrate that montmorillonite is catalytically active in removing naphthalene. Ni-montmorillonite had high activity towards naphthalene removal via steam reforming, with removal efficiencies greater than 99%. The activation energy was calculated for Ni-montmorillonite assuming first-order kinetics and was found to be 84.5 kJ/mole in accordance with the literature. Long-term activity tests were also conducted and showed that the catalyst was active with naphthalene removal efficiencies greater than 95% maintained over a 97-h test period. A little loss of activity was observed with a removal decrease from 97% to 95%. To investigate the decrease in catalytic activity, characterization of fresh and used catalyst samples was performed using thermogravimetric analysis, transmission electron microscopy, X-ray diffraction, and surface area analysis. The loss in activity was attributed to a decrease in catalyst surface area caused by nickel sintering and coke formation.


Author(s):  
Rodolfo Tellez ◽  
William Y. Svrcek ◽  
Brent R. Young

Process integration design methodologies have been developed and introduced to synthesise an optimum heat exchanger network (HEN) arrangement. However, controllability issues are often overlooked during the early stages of a plant design. In this paper we present a five-step procedure that involves the use of multivariable disturbance and control analyses based solely on steady-state information and with the purpose to assess process design developments and to propose control strategy alternatives appropriate and suitable for a HEN.


2021 ◽  
Vol 132 (2) ◽  
pp. 907-919
Author(s):  
O. Shtyka ◽  
Z. Dimitrova ◽  
R. Ciesielski ◽  
A. Kedziora ◽  
G. Mitukiewicz ◽  
...  

AbstractEthanol steam reforming was studied over Ni supported catalysts. The effects of support (Al2O3, Al2O3–ZnO, and Al2O3–CeO2), metal loading, catalyst activation method, and steam-to-ethanol molar feed ratio were investigated. The properties of catalysts were studied by N2 physisorption, TPD-CO2, X-ray diffraction, and temperature programmed reduction. After activity tests, the catalysts were analyzed by TOC analysis. The catalytic activity measurements showed that the addition either of ZnO SSor CeO2 to alumina enhances both ethanol conversion and promotes selectivity towards hydrogen formation. The same effects were observed for catalysts with higher metal loadings. High process temperature and high water-to-ethanol ratio were found to be beneficial for hydrogen production. An extended catalyst stability tests showed no loss of activity over 50 h on reaction stream. The TOC analysis of spent catalysts revealed only insignificant amounts of carbon deposit.


2016 ◽  
Vol 183 ◽  
pp. 168-175 ◽  
Author(s):  
Fangyuan Chen ◽  
Chunfei Wu ◽  
Lisha Dong ◽  
Anthony Vassallo ◽  
Paul T. Williams ◽  
...  

Author(s):  
J S Tan ◽  
H T Danh ◽  
S Singh ◽  
Q D Truong ◽  
H D Setiabudi ◽  
...  

2013 ◽  
Vol 69 (3) ◽  
pp. 451-463 ◽  
Author(s):  
D. W. de Haas ◽  
C. Pepperell ◽  
J. Foley

Primary operating data were collected from forty-six wastewater treatment plants (WWTPs) located across three states within Australia. The size range of plants was indicatively from 500 to 900,000 person equivalents. Direct and indirect greenhouse gas emissions were calculated using a mass balance approach and default emission factors, based on Australia's National Greenhouse Energy Reporting (NGER) scheme and IPCC guidelines. A Monte Carlo-type combined uncertainty analysis was applied to the some of the key emission factors in order to study sensitivity. The results suggest that Scope 2 (indirect emissions due to electrical power purchased from the grid) dominate the emissions profile for most of the plants (indicatively half to three quarters of the average estimated total emissions). This is only offset for the relatively small number of plants (in this study) that have significant on-site power generation from biogas, or where the water utility purchases grid electricity generated from renewable sources. For plants with anaerobic digestion, inventory data issues around theoretical biogas generation, capture and measurement were sometimes encountered that can skew reportable emissions using the NGER methodology. Typically, nitrous oxide (N2O) emissions dominated the Scope 1 (direct) emissions. However, N2O still only accounted for approximately 10 to 37% of total emissions. This conservative estimate is based on the ‘default’ NGER steady-state emission factor, which amounts to 1% of nitrogen removed through biological nitrification-denitrification processing in the plant (or indicatively 0.7 to 0.8% of plant influent total nitrogen). Current research suggests that true N2O emissions may be much lower and certainly not steady-state. The results of this study help to place in context research work that is focused on direct emissions from WWTPs (including N2O, methane and carbon dioxide of non-biogenic origin). For example, whereas non-biogenic CO2 contributions are relatively minor, it appears that opportunities to reduce indirect emissions as a result of modest savings in power consumption are at least in the same order as those from reducing N2O emissions. To avoid potentially high reportable emissions under NGER guidelines, particularly for methane, the onus is placed on WWTP managers to ensure that accurate plant monitoring operating records are kept.


1973 ◽  
Author(s):  
Robert H. Kadlec ◽  
Everett A. Sondreal ◽  
Donald J. Patterson ◽  
Marshall W. Graves

Sign in / Sign up

Export Citation Format

Share Document