RESIDENTS’ AWARENESS SURVEY ON WATER-RELATED DISASTER POTENTIAL IN NON-DAMAGED COMMUNITY -CASE OF SOUTHERN KYOTO DISTRICT IN THE HEAVY RAINFALL IN JULY IN 2018 IN JAPAN-

Author(s):  
Kensuke TAKENOUCHI ◽  
Masamitsu Onishi ◽  
Takahiro SAYAMA ◽  
Motohiro HONMA ◽  
Katsuya YAMORI
2014 ◽  
Vol 2 (6) ◽  
pp. 4393-4420
Author(s):  
Y. Oku ◽  
J. Yoshino ◽  
T. Takemi ◽  
H. Ishikawa

Abstract. Typhoon Talas (2011) caused extensive damage through landslides on the Kii Peninsula, Japan, in September 2011. The purpose of the present study is to quantitatively describe the potential for the occurrence of heavy rainfall-induced disasters if the typhoon track perturbs slightly or the typhoon intensifies. Regarding to the consideration of the track displacement of the typhoon, a procedure is proposed to generate different typhoon tracks perturbed from the original track of the typhoon. In this procedure, the position of a typhoon is artificially shifted at a certain time before landing in a physically consistent manner by applying potential vorticity inversion (PVI) methodology. After relocating the typhoon, the subsequent progress is simulated by a mesoscale meteorological model. Using the output, which consists of a set of realizations having different typhoon tracks, the worst-class scenario is discussed in terms of the soil water index (SWI) of the Kii Peninsula. The SWI is an indicator of the amount of water in soil that represents the hazard of landslide disasters. The maximum spatially averaged SWI is 1.10 times as large as that from the original typhoon track. Regarding the consideration of severer typhoon, the same method is used, but the intensity of the potential vorticity of a typhoon is artificially modified at the position instead of relocating potential vorticity to a different place. The maximum spatially averaged SWI is 1.28 times as large as that of the original typhoon intensity.


2002 ◽  
Vol 2 (3) ◽  
pp. 17-22
Author(s):  
A.P. Wyn-Jones ◽  
J. Watkins ◽  
C. Francis ◽  
M. Laverick ◽  
J. Sellwood

Two rural spring drinking water supplies were studied for their enteric virus levels. In one, serving about 30 dwellings, the water was chlorinated before distribution; in the other, which served a dairy and six dwellings the water was not treated. Samples of treated (40 l) and untreated (20 l) water were taken under normal and heavy rainfall conditions over a six weeks period and concentrated by adsorption/elution and organic flocculation. Infectious enterovirus in concentrates was detected in liquid culture and enumerated by plaque assay, both in BGM cells, and concentrates were also analysed by RT-PCR. Viruses were found in both raw water supplies. Rural supplies need to be analysed for viruses as well as bacterial and protozoan pathogens if the full microbial hazard is to be determined.


2017 ◽  
Vol 2017 (4) ◽  
pp. 5684-5698
Author(s):  
Yuki Kuwahara ◽  
Yoshiharu Itaya ◽  
Yuji Itou

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


Sign in / Sign up

Export Citation Format

Share Document