ESTIMATION OF WAVE OVERTOPPING RATE ON SEA WALL VARIED WITH HEIGHT AND SETBACK DISTANCE OF PARAPET

2018 ◽  
Vol 74 (2) ◽  
pp. I_1027-I_1032 ◽  
Author(s):  
Katsuya HIRAYAMA ◽  
Yuuki HAMANO ◽  
Junya NAGANUMA
Author(s):  
Dogan Kisacik ◽  
Gulizar Ozyurt Tarakcioglu ◽  
Cuneyt Baykal ◽  
Gokhan Kaboglu

Crest modifications such as a storm wall, parapet or a bullnose are widely used to reduce the wave overtopping over coastal structures where spatial and visual demands restrict the crest heights, especially in urban areas. Although reduction factors of these modifications have been studied for sloped structures in EurOtop Manual (2016), there is limited information regarding the vertical structures. This paper presents the experimental set-up and first results of wave overtopping tests for a vertical wall with several different super structure types: a) seaward storm wall, b) sloping promenade, c) landward storm wall, d) stilling wave basin (SWB), e) seaward storm wall with parapet, f) landward storm wall on the horizontal promenade with parapet, g) landward storm wall with parapet, h) stilling wave basin (SWB) with parapet, under breaking wave conditions. The SWB is made up of a seaward storm wall (may be a double shifted rows) , a sloping promenade (basin) and a landward storm wall. The seaward storm wall is partially permeable to allow the evacuation of the water in the basin.


1968 ◽  
Vol 1 (11) ◽  
pp. 54 ◽  
Author(s):  
Senri Tsuruta ◽  
Yoshimi Goda

An experiment was carried out on the overtopping of mechanically generated irregular waves over vertical walls. The experimental discharge was almost in agreement with the expected discharge which had been calculated with the wave height histogram and the data of regular wave overtopping based on the principle of linear summation. The expected values of overtopping discharge were calculated for various laboratory data, which had been represented in a unified form of non-dimensional quantities. The calculation has yielded two diagrams of expected overtopping discharge, one for the sea wall of vertical wall type and the othei for the sea wall covered with artificial concrete blocks.


2000 ◽  
Vol 16 ◽  
pp. 297-302
Author(s):  
Yuji Kamikubo ◽  
Isao Irie ◽  
Keisuke Murakami ◽  
Kazunori Kanda ◽  
Keiichiro Ayukawa ◽  
...  

1974 ◽  
Vol 1 (14) ◽  
pp. 84
Author(s):  
Norio Tanaka

The heightening of a sea wall is often proposed for the purpose of decreasing the amount of wave-overtopping. In a recreation beach, however, the heightening of sea wall is undesirable from the view-point of environmental preservation and beach utilization. In this paper, instead of it, a proposal is made of the sea wall with a wide frontal step as well as the widening of beach by artificial nourishment. The frontal step is not only effective to decrease the amount of wave-overtopping, but also serves as a promenade for visitors. The widening of beach is known to serve to decrease wave-overtopping as well as to increase the utility for recreation. However, the protection of the nourished beach itself becomes sometimes a difficult problem. In this paper, the hydraulic characteristics of a wide frontal step and the effect of several protective measures for the nourished beach are described on the basis of model and field tests conducted for the improvement of Suma Beach. Suma Beach is a recreational beach situated west of Kobe Port as shown in Fig. 1. The shore-line is about 2 km long and runs from east to west (Fig.11). The beach profile, as shown in Fig.2, has the narrow backshore at about 3 m above L.W.L. and a small step at about 1.5 m below L.W.L. The beach slope is 1/10 in the foreshore, 1/25-1/30 between 2 and 5 m below L.W.L and 1/60-1/80 in the offshore beyond about 6 m below L.W.L. The waves are predominant from the direction of SSW so that the beach materials tend to move eastward along the shore.


1970 ◽  
Vol 1 (12) ◽  
pp. 88
Author(s):  
S. Nagal

In the recent decade, very wide areas of sea where the depths of water are from several meters to ten meters or more during storms have been reclaimed for industrial firms and port facilities in many places in Japan As the incident wave energy in such cases is very large at the sea-walls, the protection of the reclaimed lands from wave overtopping by the conventional sea-walls of vertical type or composite-slope«and-berai type is generally impossible from an economical point of view In Japan a special type of sea-wall, which is of such a type that a rubble-mound covered with specially shaped precast concrete armor blocks is built in front of the sea-wall to absorb most of the incident wave energy, has been constructed to protect the reclaimed lands from wave overtopping Most of the seawalls have been proved satisfactory after passing of typhoons over or near the sea-walls The design of the sea-walls is presented here in by showing the comparisons between the experiments and prototypes during typhoons.


2014 ◽  
Vol 1 (34) ◽  
pp. 5 ◽  
Author(s):  
Dieter F.A. Vanneste ◽  
Corrado Altomare ◽  
Tomohiro Suzuki ◽  
Peter Troch ◽  
Toon Verwaest

2020 ◽  
Vol 24 (1) ◽  
pp. 100-105
Author(s):  
Herawati Herawati ◽  
Muhammad Arsyad Thaha ◽  
Chairul Paotonan

Abstrak Wilayah pesisir merupakan pertemuan antara wilayah laut dan wilayah darat, dimana daerah ini merupakan daerah interaksi antara ekosistem darat dan ekosistem laut yang sangat dinamis dan saling mempengaruhi. Tujuan penelitian ini adalah untuk menentukan material lokal yang potensial dapat digunakan sebagai bahan bangunan pelindung pantai dan memilih tipe bangunan pelindung pantai yang sesuai kondisi hidro-oseanografi di lokasi studi dengan metode Analythic Hierarchy Process. Lokasi penelitian berada di Provinsi Sulawesi Tenggara, tepatnya di Pulau Kabaena, Kecamatan Kabaena Barat Desa Sikeli kabupaten Bombana. Pulau Kabaena memiliki luas 873 km2. Secara geografis terletak antara 4°22’ 59,4” - 5°28’ 26,7” Lintang Selatan serta antara 121°27’46,7”-122°09’,4” Bujur Timur. Hasil penelitian menunjukkan perairan disepanjang tanjung perak sangat mempengaruhi hidro-oseonografi disekitar pantai desa Sikeli. Kondisi ini berpengaruh terhadap pola pergerakan arus dan tinggi gelombang datang disekitar pantai desa Sikeli. Tinggi gelombang rata-rata yang paling besar merambat dari arah barat sebesar 0.49 m dengan presentase kajadian sebesar 32.42 %, disusul arah barat laut sebesar 0.39 m (20.56 %), arah tenggara sebesar 0.31 m (8.72 %) arah barat daya sebesar 0.31 m (7.99 %), arah utara sebesar 0.20 m (6.94 %), arah timur sebesar 0.15 m (11.81 %), arah selatan sebesar 0.12 m (3.42 %), dan arah timur laut sebesar 0.11 m (8.15 %). Pengambilan keputusan untuk memilih tipe bangunan pelindung pantai dengan metode AHP (Analytical Hierarchy Process) untuk penanganan abrasi pesisir pantai desa Sikeli berbasis bahan lokal diperoleh bahwa alternatif bangunan dengan nilai keterpilihan yang tertinggi adalah detached breakwater (0,4432) disusul groin (0,2479), sea-wall (0,1700) dan revetment (0.1389). Detached breakwater berfungsi untuk menahan laju sedimen kearah laut, mengurangi ketinggian dan meredam energi gelombang dan tidak dibangun sepanjang garis pantai yang akan dilindungi sehingga kapal nelayan dapat ditambat dipesisir pantai dengan aman. Abstract The Selection Type of Coastal Protection Structures in Sikeli Village Based on Local Materials. The coastal area is a meeting point between the sea and land areas, where this area is an area of interaction between terrestrial ecosystems and marine ecosystems which are very dynamic and influence each other. The purpose of this research is to determine local materials that can be used as coastal protection materials and to select the type of coastal protection that is suitable for the hydro-oceanographic conditions in the study location using the Analythic Hierarchy Process method. The research location is in Southeast Sulawesi Province, precisely on Kabaena Island, Kabaena Barat District, Sikeli Village, Bombana Regency. Kabaena Island has an area of 873 km2. Geographically it is located between 4° 22' 59.4"- 5° 28' 26.7" South Latitude and between 121° 27' 46.7 "-122° 09' 4" Longitude East. The results showed that the waters along Tanjung Perak greatly affect the hydro-oseonography around the coast of Sikeli village. This condition affects the current movement pattern and the height of the incoming waves around the coast of Sikeli village. The largest average wave height propagating from the west is 0.49 m with a kajadian percentage of 32.42%, followed by the northwest direction of 0.39 m (20.56%), southeast direction of 0.31 m (8.72%) to the southwest of 0.31 m (7.99%), to the north of 0.20 m (6.94%), to the east of 0.15 m (11.81%), to the south of 0.12 m (3.42%), and to the northeast of 0.11 m (8.15%). The decision to choose the type of coastal protection using the AHP (Analytical Hierarchy Process) method for the coastal abrasion management model in Sikeli village based on local materials was obtained that the alternative building with the highest electability value was the detached breakwater (0.4432) followed by groins (0.2479), sea-wall (0.1700) and revetment (0.1389). The detached breakwater model which functions to restrain the sediment rate towards the sea, reduce the height and reduce wave energy and is not built along the coastline which will be protected so that fishing boats can be moored to the coast safely.


Sign in / Sign up

Export Citation Format

Share Document