scholarly journals Energy dissipation model of the turbulence and the calculation of wave height variation in surf-zone.

1989 ◽  
Vol 36 ◽  
pp. 36-40
Author(s):  
TOSHIO AONO
Author(s):  
Tai-Wen Hsu ◽  
Kun-Sian Lai

Analytical solutions for wave height decay due to shoaling and breaking on a bar type profile are presented. A macroscopic analogy between an idealized surf zone and a hydraulic jump are incorporated in the theory to account for wave transformation and energy dissipation in the surf zone. The theoretical results are fairly compared with laboratory observations. Key parameters that influence wave energy dissipation in the surf zone are investigated.


1978 ◽  
Vol 1 (16) ◽  
pp. 29 ◽  
Author(s):  
I.A. Svendsen ◽  
P.A. Madsen ◽  
J. Buhr Hansen

The equations describing conservation of mass, momentum and energy in a turbulent free surface flow are derived for a controle volume extending over the whole depth. The effect of the turbulent surface oscillations are discussed but neglected in the following analysis, where the equations are applied to the energy balance in a surf zone wave motion. This leads to results for the wave height variation and the velocity of propagation. The results cannot be reconciled completely with measurements and the concluding discussion is aimed at revealing how the model can be improved.


1988 ◽  
Vol 1 (21) ◽  
pp. 135
Author(s):  
James R. Tallent ◽  
Takao Yamashita ◽  
Yoshito Tsuchiya

The process by which wave energy dissipates across the surf zone and its affect on the bed profile is, of course, a topic of immediate concern and debate. Various concepts of the wave energy dissipation process have been modeled, however, additional research is needed before confidence can be placed in a particular calculation scheme. In addition to the problems associated with proper model derivation a method of application and result interpretation of actual surf zone field data must be devised and understood. This is, of course, prerequisite to any realistic use of a wave energy dissipation model in an engineering project. The following study was therefore conducted in order to examine the applicability of surf zone field data to wave energy dissipation models and to investigate the bed profile relationship. Two wave energy dissipation models were selected for comparison in this study, the 'Undertow Model'(UM) which is based on the conservation of wave energy flux across the surf zone (3), and the 'Turbulent Bore Model'(TBM) which is based on hydraulic jump theory (2). Individual waves were identified in the wave record by employing the zero up-crossing method, and wave energy calculations were based on small amplitude wave theory, Svendsen's nonlinearity parameter Bo (4), and the 1/3 Significant Wave classification.


1988 ◽  
Vol 1 (21) ◽  
pp. 41 ◽  
Author(s):  
Akira Watanabe ◽  
Mohammad Dibajnia

A numerical model is presented for nearshore wave deformation due to shoaling and breaking, and to decay and recovery in the surf zone. The model is based on a set of time-dependent mild slope equations including a term of wave energy dissipation caused by breaking. Its applicability is demonstrated by comparisons between the computations and the measurements of cross-shore distributions of the wave height and potential energy over typical beach configurations.


1986 ◽  
Vol 1 (20) ◽  
pp. 52
Author(s):  
Shigeki Sakai ◽  
Kouetsu Hiyamizu ◽  
Hiroshi Saeki

A model for wave height decay of a spilling breaker is proposed. The energy dissipation of a breaking wave is approximated by that of a propagating bore. In order to explain the gentle decay of spilling breaker at the initial stage, a development of a foam region, which indicates the amount of foam on the wave profile and determines the rate of energy dissipation, is considered. In addition to this formulation, the energy and momentum balance equations are described by a linear wave theory in shallow water and are simultaneously solved. Comparisons with experimental results show that the model gives a good prediction in both inner and outer regions, and that two coefficients in the present model are related to the deep water wave steepness and the slope of beaches.


2019 ◽  
Vol 19 (10) ◽  
pp. 2183-2205 ◽  
Author(s):  
Bruno Castelle ◽  
Tim Scott ◽  
Rob Brander ◽  
Jak McCarroll ◽  
Arthur Robinet ◽  
...  

Abstract. The two primary causes of surf zone injuries (SZIs) worldwide, including fatal drowning and severe spinal injuries, are rip currents (rips) and shore-break waves. SZIs also result from surfing and bodyboarding activity. In this paper we address the primary environmental controls on SZIs along the high-energy meso–macro-tidal surf beach coast of southwestern France. A total of 2523 SZIs recorded by lifeguards over 186 sample days during the summers of 2007, 2009 and 2015 were combined with measured and/or hindcast weather, wave, tide, and beach morphology data. All SZIs occurred disproportionately on warm sunny days with low wind, likely because of increased beachgoer numbers and hazard exposure. Relationships were strongest for shore-break- and rip-related SZIs and weakest for surfing-related SZIs, the latter being also unaffected by tidal stage or range. Therefore, the analysis focused on bathers. More shore-break-related SZIs occur during shore-normal incident waves with average to below-average wave height (significant wave height, Hs = 0.75–1.5 m) and around higher water levels and large tide ranges when waves break on the steepest section of the beach. In contrast, more rip-related drownings occur near neap low tide, coinciding with maximised channel rip flow activity, under shore-normal incident waves with Hs >1.25 m and mean wave periods longer than 5 s. Additional drowning incidents occurred at spring high tide, presumably due to small-scale swash rips. The composite wave and tide parameters proposed by Scott et al. (2014) are key controlling factors determining SZI occurrence, although the risk ranges are not necessarily transferable to all sites. Summer beach and surf zone morphology is interannually highly variable, which is critical to SZI patterns. The upper beach slope can vary from 0.06 to 0.18 between summers, resulting in low and high shore-break-related SZIs, respectively. Summers with coast-wide highly (weakly) developed rip channels also result in widespread (scarce) rip-related drowning incidents. With life risk defined in terms of the number of people exposed to life threatening hazards at a beach, the ability of morphodynamic models to simulate primary beach morphology characteristics a few weeks or months in advance is therefore of paramount importance for predicting the primary surf zone life risks along this coast.


1992 ◽  
Vol 17 (1-2) ◽  
pp. 49-70 ◽  
Author(s):  
R.C. Nelson ◽  
J. Gonsalves
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document