scholarly journals SCREENING OF THERMOPHYLIC MICROORGANISM FROM IJEN CRATER BANYUWANGI AS PHYTASE ENZYME PRODUCER

2010 ◽  
Vol 9 (3) ◽  
pp. 470-473
Author(s):  
Aline Puspita Kusumadjaja ◽  
Tutuk Budiati ◽  
Ni Nyoman Tri Puspaningsih ◽  
Sajidan Sajidan

Phytase is enzyme which hydrolysis phytic acid to anorganic phosphate and myo-inositol pentakis-, tetrakis-, tris-, bis-, and monophosphate. The use of phytase in feed industry can overcome environment and nutrition problems which were arisen from unmetabolism phytic acid or its salt by poultry, swine and fish. The feed industry needs a thermostable enzyme due to the need of high temperature in pelleting process, i.e. 81 °C. By using thermostabile phytase, the pelleting process will not affect the enzyme activity. Thermostabile phytase can be isolated from microorganism live in hot spring water or volcano crater. In this study, the screening of thermophylic microorganism having thermostabile phytase activity in Ijen Crater, Banyuwangi, has been done. From this process, it was obtained 33 isolates that produce phytase enzyme. Isolate was code by AP-17 yields highest phytase activity, that is 0.0296 U/mL, so this isolate was choosen for further study. The activity of crude phytase enzyme was measured based on the amount of anorganic phosphate that was produced in enzymatic reaction using UV-VIS spectrophotometer at 392 nm. Based on morphology test to identify the gram type of microorganism, isolate AP-17 has a bacill cell type and identified as positive gram bacteria. This isolate was assumed as Bacillus type.   Keywords: Phytase, thermophilic microorganism, phytase activity

2021 ◽  
Vol 12 (2) ◽  
pp. 29-38
Author(s):  
Nurul Izyan Che Mohamood ◽  
Nadiawati Alias ◽  
Nurul Asma Hasliza Zulkifly

Animal feed from cereal grains and oilseed meals mainly containing phytic acid which has adverse effects on animal nutrition and its environment. Ruminants can easily digest the phytic acid as they have fungi and bacteria in their guts which can produce phytase to degrade the phytic acid. Meanwhile, phytic acid in non-ruminant animals is poorly digested due to the lack of sufficient phytase in their guts. Thus, the feed must be supplemented with inorganic phosphate to ensure it can absorb adequate nutrients. This study aimed to determine the effects of using different carbon sources to the growth of different strains of phytase producing bacteria based on optical density (OD), colony forming unit (CFU), and their phytase production. All four strains of potentially producing-phytase bacteria  have been isolated from several hot springs in Malaysia. The bacteria were grown in modified Phytase Screening Medium (PSM) with glucose and lactose as a carbon source and under optimum culture conditions (pH 5.5, 37˚C, 200 rpm) for 72 hours. For quantitative screening of phytase production, the bacterial cultures were harvested to obtain the supernatants that were used to measure the amount of inorganic phosphorus released by the bacterial strains. Among these carbon sources, glucose has shown consistency between their CFU counts and the observed ODs whereas lactose shown inconsistency. Meanwhile, the maximum phytase activity was recorded for all strains in the presence of glucose in which bacteria strain L3 (0.0404 U/mL), RT (0.0359 U/mL), B9 (0.0262 U/mL), and A (0.0263 U/mL). As for the overall, strain L3 (Labis, Johor) gave a promising rate of inorganic phosphate released with optimum phytase activity value of 0.0404 U/mL in presence of glucose and lactose. The optimisation of the fermentation medium can contribute to more economical production of industrial enzyme as phytase has the potential to produce feed additives for poultry feeding.


Author(s):  
Eka Djatnika Nugraha ◽  
Masahiro Hosoda ◽  
June Mellawati ◽  
Untara Untara ◽  
Ilsa Rosianna ◽  
...  

The world community has long used natural hot springs for tourist and medicinal purposes. In Indonesia, the province of West Java, which is naturally surrounded by volcanoes, is the main destination for hot spring tourism. This paper is the first report on radon measurements in tourism natural hot spring water in Indonesia as part of radiation protection for public health. The purpose of this paper is to study the contribution of radon doses from natural hot spring water and thereby facilitate radiation protection for public health. A total of 18 water samples were measured with an electrostatic collection type radon monitor (RAD7, Durridge Co., USA). The concentration of radon in natural hot spring water samples in the West Java region, Indonesia ranges from 0.26 to 31 Bq L−1. An estimate of the annual effective dose in the natural hot spring water area ranges from 0.51 to 0.71 mSv with a mean of 0.60 mSv for workers. Meanwhile, the annual effective dose for the public ranges from 0.10 to 0.14 mSv with an average of 0.12 mSv. This value is within the range of the average committed effective dose from inhalation and terrestrial radiation for the general public, 1.7 mSv annually.


2010 ◽  
Vol 53 (4) ◽  
pp. 975-980 ◽  
Author(s):  
Juliana da Silva Agostini ◽  
Rosicler Balduíno Nogueira ◽  
Elza Iouko Ida

The objective of this work was to investigate the germination of hybrid sunflowers BRS191 and C11 as a means of lowering phytic acid (PA) content by enhancing the activity of endogenous phytase and acid phosphatase. The concentration of PA in hybrid sunflower achenes varied from 2.16 to 2.83g/100g of sample (p < 0.05). The phytase and acid phosphatase activities of sunflowers BRS191 and C11 were the highest on the 4th and 5th days of germination, respectively, with the release of the phosphorus. These results indicated that hybrid sunflower PA reduced and enhance phytase activity at distinct germination periods, which could open up the possibility of applying these enzymes in the control of PA content in cereals, thus improving their nutritional value.


Author(s):  
Sutthipong Taweelarp ◽  
Supanut Suntikoon ◽  
Thaned Rojsiraphisal ◽  
Nattapol Ploymaklam ◽  
Schradh Saenton

Scaling in a geothermal piping system can cause serious problems by reducing flow rates and energy efficiency. In this work, scaling potential of San Kamphaeng (SK) geothermal energy, Northern Thailand was assessed based on geochemical model simulation using physical and chemical properties of hot spring water. Water samples from surface seepage and groundwater wells, analyzed by ICP-OES and ion chromatograph methods for chemical constituents, were dominated by Ca-HCO3 facies having partial pressure of carbon dioxide of 10–2.67 to 10–1.75 atm which is higher than ambient atmospheric CO2 content. Surface seepage samples have lower temperature (60.9°C) than deep groundwater (83.1°C) and reservoir (127.1°C, based on silica geothermometry). Geochemical characteristics of the hot spring water indicated significant difference in chemical properties between surface seepage and deep, hot groundwater as a result of mineral precipitation along the flow paths and inside well casing. Scales were mainly composed of carbonates, silica, Fe-Mn oxides. Geochemical simulations based on multiple chemical reaction equilibria in PHREEQC were performed to confirm scale formation from cooling and CO2-degassing processes. Simulation results showed total cumulative scaling potential (maximum possible precipitation) from 267-m deep well was estimated as 582.2 mg/L, but only 50.4% of scaling potential actually took place at SK hot springs. In addition, maximum possible carbon dioxide outflux to atmosphere from degassing process in SK geothermal field, estimated from the degassing process, was 6,960 ton/year indicating a continuous source of greenhouse gas that may contribute to climate change. Keywords: Degassing, Geochemical modeling, PHREEQC, San Kamphaeng Hot Springs, Scaling


2014 ◽  
Vol 2 (12) ◽  
pp. 7293-7308
Author(s):  
Z. Chen ◽  
X. Zhou ◽  
J. Du ◽  
C. Xie ◽  
L. Liu ◽  
...  

Abstract. Hydrogeochemistry of 10 hot springs in the Kangding district was investigated by analyzing cation and anion concentrations of the spring waters. The water samples were collected within 5 days after the Lushan earthquake. The spring waters are classified into 7 chemical types based on the hydrochemical compositions. Comparison with the hydrochemical data before the Lushan earthquake, concentrations of Ca2+, HCO3− and TDS of the waters from the Guanding, Erdaoqiao, Gonghe, Erhaoying, Tianwanhe and Caoke springs evidently increased, which resulted from enhancing interaction between deep-earth fluids and carbonate rocks by the increment of dissolved CO2 in the groundwater. Concentrations of Na+, Cl− and SO42− of the waters from the Guanding, zheduotang, Xinxing and Gonghe springs were decreased, indicating dilution of precipitation water. Concentrations of Na+ and SO42− of the Erhaoying spring water increased, which may be attributed to the more supplement of fluids enriched in sulfur. The results indicate that hydrochemical components of spring water can be used as an effective indicator for earthquakes.


Life ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 11 ◽  
Author(s):  
Daniel Milshteyn ◽  
Bruce Damer ◽  
Jeff Havig ◽  
David Deamer

Sign in / Sign up

Export Citation Format

Share Document