scholarly journals Analytical Method Validation and Formula Optimization of Topical Nanoemulsion Formulation Containing Resveratrol

Author(s):  
Christofori Maria Ratna Rini Nastiti ◽  
Florentinus Dika Octa Riswanto

Resveratrol (RSV), a natural lipophilic phytoalexin, was reported as an antioxidant and anti-inflammatory agent, which has the potential to cure diabetic wounds. However, several studies suggested the limitation of RSV, such as poor aqueous solubility, poor stability, and poor oral bioavailability. To overcome the issues, RSV was formulated as a topical nanoemulsion. It is important to ensure the quality of the dosage form by evaluating RSV load in the nanoformulation and optimizing the formula. A reversed-phase HPLC method was developed and validated prior to the load determination of RSV in the nanoemulsion formulation. The composition of triacetin-eugenol, Kolliphor® RH 40, and Transcutol® was further optimized by employing a Box-Behnken Design (BBD) to achieve the optimum composition with expected viscosity and RSV load. The HPLC method for determining RSV load was successfully validated for parameters of selectivity with the resolution of 8.487, linearity and range (r = 0.9979), precision (0.12% of RSD), accuracy (109–110% of recovery), the limit of detection (0.574 µg/mL), and limit of quantitation (1.740 µg/mL). The result of formula optimization was promising, showing the optimum composition of triacetin-eugenol, Kolliphor® RH 40, and Transcutol® at 4.44 g, 30.97 g, and 11.39 g, respectively.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Fatemeh Zamani Mazdeh ◽  
Sima Sasanfar ◽  
Anita Chalipour ◽  
Elham Pirhadi ◽  
Ghazal Yahyapour ◽  
...  

Cheese and yogurt are two kinds of nutritious dairy products that are used worldwide. The major preservatives in dairy products are sodium benzoate, potassium sorbate, and natamycin. The maximum permitted levels for these additives in cheese and yogurt are established according to Iranian national standards. In this study, we developed a method to detect these preservatives in dairy products by reversed phase chromatography with UV detection in 220 nm, simultaneously. This method was performed on C18 column with ammonium acetate buffer (pH=5) and acetonitrile (73 : 27 v/v) as mobile phase. The method was carried out on 195 samples in 5 kinds of commercial cheeses and yogurts. The results demonstrated insufficient separation where limit of detection (LOD) and limit of quantitation (LOQ) ranged from 0.326 to 0.520 mg/kg and 0.989 to 1.575 mg/kg in benzoate and sorbate, respectively. The correlation coefficient of each calibration curve was mostly higher than 0.997. All samples contained sodium benzoate in various ranges. Natamycin and sorbate were detected in a remarkable amount of samples, while, according to Iranian national standard, only sorbate is permitted to be added in processed cheeses as a preservative. In order to control the quality of dairy products, determination of preservatives is necessary.


Author(s):  
B. Mounika ◽  
L. Srikanth ◽  
A. Venkatesha

Objective: A reversed phase liquid chromatography was determined and validated for the estimation of Mirabegron in tablet dosage form.Methods: The validation study of RP-HPLC showed a simple, rapid, accurate, precise, reproducible results by using a stationary phase: Waters Acquity HSS T-3 C18 (100 × 2.1 mm, 1.7μm and Mobile Phase-Potassium di-hydrogen phosphate: acetone in the ratio (40:60 v/v) at PH6.0±0.02. Detection is carried out at 243 nm using UV detector.Results: The total chromatographic analysis time per sample was about 6 min with Mirabegron eluting at a retention time of 2.754. Tailing factor obtained from the standard injection is 1.6. Theoretical Plates obtained from the standard injection is 2736.7. The flow rate is 1 ml/min and linearity in the concentration range of 30-70μg/ml (R2=0.999). The precision was 0.4% the intermediate precision was 0.08%. The deliberately varied chromatographic conditions in the concentration range for the evaluation of robustness is 10-50 µg/ml, (n=3). The limit of detection (LOD) and limit of quantitation (LOQ) for Mirabegron were 0.01µg/ml and 0.05µg/ml respectively. The % recovery is 99.8 % with % R. SD of 0.09. The results proved that the optimized HPLC method fulfills these requirements within the ICH accepted limits.Conclusion: The high recovery and low relative standard deviation confirm the suitability of the proposed method for the determination of Mirabegron in tablet dosage form. 


2014 ◽  
Vol 22 (1) ◽  
pp. 131-140 ◽  
Author(s):  
Magdalena Tuszyńska

AbstractA simple, accurate and selective HPLC method was developed and validated for determination of quercetin and kaempferol, which are the main flavonols in broccoli. The separation was achieved on a reversed-phase C18 column using a mobile phase composed of methanol/water (60/40) and phosphoric acid 0.2% at a flow rate of 1.0 ml min-1. The detection was carried out on a DAD detector at 370 nm. This method was validated according to the requirements for new methods, which include selectivity, linearity, precision, accuracy, limit of detection and limit of quantitation. The current method demonstrates good linearity, with R2 > 0.99. The recovery is within 98.07-102.15% and 97.92-101.83% for quercetin and kaempferol, respectively. The method is selective, in that quercetin and kaempferol are well separated from other compounds of broccoli with good resolution. The low limit of detection and limit of quantitation of quercetin and kaempferol enable the detection and quantitation of these flavonoids in broccoli at low con–centrations.


2019 ◽  
Vol 31 (5) ◽  
pp. 1002-1008
Author(s):  
Somana Siva Prasad ◽  
G.V. Krishna Mohan ◽  
A. Naga Babu

A novel reversed-phase high performance liquid chromatographic (HPLC) technique for the determination of everolimus (Isomer-B) and its impurities in the tablet dosage form has been optimized using analytical quality by design (QbD) approach. All the compounds are monitored with the photodiode array (PDA) detector at 280 nm and the parameters namely; precision, accuracy, specificity, stability, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The quantitation limits of IMP-A, IMP-B, IMP-C, IMP-D, IMP-E, Sirolimus and TGR are found to be 0.08, 0.08, 0.10, 0.10, 0.10, 0.08 and 0.08, respectively. Recovery studies from 0.9 mg/L to 9.0 mg/L are performed for all impurities and the values were obtained between 85-110 %. Injection volume and test concentrations have been optimized to achieve LOQ values under the reporting threshold. The whole technique is developed and validated as per International Council for Harmonization (ICH) guidelines. The proposed method is robust, sensitive, rapid and successful and helpful in the regions where regulatory agencies recommend HPLC analytical method.


Author(s):  
Aparajita Malakar ◽  
Bishwajit Bokshi ◽  
Dilruba Nasrin

A new simple, specific, precise and accurate reversed-phase liquid chromatography method has been developed for the determination of Vildagliptin (VLG) in pharmaceutical dosage form. The separation was achieved on a Xterra® Waters C18 column (150mm×4.6mm, 5?m) using mobile phase consisting of a mixture of aqueous phase (1 ml of 25% ammonium hydroxide was dissolved in 1000 ml of water for chromatography, pH of the solution was adjusted to the value of 9.5 using a 50% solution of phosphoric acid) and organic phase (methanol) in the ratio of 60:40 v/v at a flow rate of 1.0 ml/min. Detection was carried out at 210nm. The retention time of Vildagliptin was found to be 6.3 min. The calibration curve was found linear between 5- 200?g/ml (r2 = 0.9997). Limit of detection and limit of quantitation were 1.47 and 4.90 ?g/mL, respectively. The percentage recoveries of Vildagliptin were found to be in the range of 99.11-100.62%. The method was validated in accordance with International Conference on Harmonization acceptance criteria for specificity, linearity, precision, accuracy, robustness and system suitability. The excipients did not interfere in the determination of VLG. The proposed method was successfully applied for the quantitative analysis of VLG in tablet dosage form, which will help to improve quality control. DOI: http://dx.doi.org/10.3329/ijpls.v1i1.12947 International Journal of Pharmaceutical and Life Sciences Vol.1(1) 2012


Author(s):  
Dilshad Ahmad ◽  
Faisal A. Al Meshaiti ◽  
Yazeed K. Al Anazi ◽  
Osama Al Owassil ◽  
Alaa Eldeen B. Yassin

Anastrozole, an aromatase inhibitor drug, is used for the treatment of breast cancer in pre- and postmenopausal women. Anastrozole’s incorporation into nanoparticulate carriers would enhance its therapeutic performance. To perceive the exact loaded amount of drug in nanocarriers, a valid analytical method is required. The reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed and validated by using the C18 column, 150 × 4.6 mm, 5 µm particle size, in isocratic mobile phase composed of 50:50 V/V (volume/volume) acetonitrile–phosphate buffer (pH 3) flowing at a rate of 1.0 mL/min, and a diode array detector (DAD) set at λmax = 215 nm. The validation parameters such as linearity, accuracy, specificity, precision, and robustness have proven the accuracy of the method, with the relative standard deviation percentage (% RSD) values < 2. The limit of detection of the method was found equal to 0.0150 µg/mL, and the limit of quantitation was 0.0607 µg/mL. The percent recovery of sample was in the range of 98.04–99.25%. The method has the advantage of being rapid with a drug retention time of 2.767 min, specific in terms of resolution of peaks void of interference with any of the excipients, and high reproducibility. This makes it highly applicable for quality control purposes.


Author(s):  
Birva A. Athavia ◽  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
S. M. Vijayendra Swamy ◽  
Chetana B. Prajapati

Objective: The aim and objective of this study was to develop and validate Stability Indicating HPLC method for determination of Vilazodone Hydrochloride.Methods: The method was carried out on a Phenomenex, C18 (250x4.6 mm, 5 µm) Column using a mixture of Acetonitrile: Water (50:50v/v), pH adjusted to 3.3 with Glacial Acetic Acid for separation. The flow rate was adjusted at 1 ml/min and Detection was carried out at 240 nm.Results: The retention time of vilazodone hydrochloride was found to be 2.3 min. The calibration curve was found to be linear in the range 25-75µg/ml with a correlation coefficient (R2=0.996). The limit of detection and limit of quantitation were found to be 4.78µg/ml and 14.48µg/ml respectively. The % recovery of vilazodone hydrochloride was found to be in the range of 98.21±0.08 % to 99.07±0.64%. The proposed method was successfully applied for the estimation of vilazodone hydrochloride in marketed tablet formulation.Vilazodone Hydrochloride was subjected to forced degradation under Acidic, Alkaline, Oxidation, Dry Heat and Photolytic degradation conditions. Vilazodone hydrochloride showed 3.12% degradation under acidic condition, 4.78% under alkaline condition, 7.8% under oxidation condition, 3.53% under dry heat condition and 4.9% under photolytic condition.Acid degradation impurity was identified and characterised by LC-MS/MS was found to be 1-(4-Penten-1-yl) piperazine having molecular weight 154.253 (m/z 155.08) and Molecular Formula C9H18N2.Conclusion: A simple, precise, rapid and accurate Stability Indicating HPLC method has been developed and validated for the determination of Vilazodone Hydrochloride in presence of its degradation products as per the ICH Guidelines. 


2017 ◽  
Vol 9 (2) ◽  
pp. 34
Author(s):  
N. Balaji ◽  
Sayeeda Sultana

Objective: An efficient, high performance liquid chromatographic method has been developed and validated for the quantification of related substances in pioglitazone hydrochloride drug substance.Methods: This method includes the determination of three related substances in pioglitazone hydrochloride. The mobile phase A is 0.1% w/v triethylamine in water with pH 2.5 adjusted by dilute phosphoric acid. The mobile phase B is premixed and degassed mixtures of acetonitrile and methanol. The flow rate was 1 ml/min. The elution used was gradient mode. The HPLC column used for the analysis was symmetry C18 with a length of 250 mm, the internal diameter of 4.6 mm and particle size of 5.0 microns.Results: The developed method was found to be linear with the range of 0.006-250% with a coefficient of correlation 0.99. The precision study revealed that the percentage relative standard deviation was within the acceptable limit. The limit of detection and limit of quantitation of the impurities was less than 0.002%and 0.006% with respect to pioglitazone hydrochloride test concentration of 2000 µg/ml respectively. This method has been validated as per ICH guidelines Q2 (R1).Conclusion: A reliable, economical HPLC method was magnificently established for quantitative analysis of related substances of pioglitazone hydrochloride drug substance.


2000 ◽  
Vol 83 (4) ◽  
pp. 957-962 ◽  
Author(s):  
George M Ware ◽  
G William Chase ◽  
Ronald R Eitenmiller ◽  
Austin R Long

Abstract A liquid chromatographic (LC) method is described for the determination of vitamin K1 in medical foods. The sample is enzymatically digested with lipase and α-amylase and extracted with 1% sodium bicarbonate solution–isopropanol (1 + 1). After C18 solid-phase extraction, vitamin K1 is separated by nonaqueous reversed-phase LC, converted to the hydroquinone by postcolumn zinc reduction, and quantitated by fluorescence detection. The limit of detection is 8 pg (3 σ), and the limit of quantitation is 27 pg (10 σ) on column. Linear response ranged from 0.1 to 1.0 ng vitamin K1 (r = 0.9999). The mean recovery (n = 38) for all spiking levels was 101.6 ± 2.85%. Analysis of Standard Reference Material 1846, Infant Formula, gave a mean value of 0.95 ± 0.088 mg vitamin K/kg (K or K1?)(n = 31) with a coefficient of variation of 9.26.


2009 ◽  
Vol 92 (1) ◽  
pp. 302-306 ◽  
Author(s):  
Xiao-Jing Yan ◽  
Xiao-Mei Liang ◽  
Yan-Jun Xu ◽  
Shu-Hui Jin ◽  
Dao-Quan Wang

Abstract A method was developed for the determination of 7B3 (12-propyloxyimino-1,15-pentadecanlactam), a novel macrolactam fungicide, by liquid chromatography/mass spectrometry (LC/MS) with positive electrospray ionization (ESI+). The method used a reversed-phase C18 column and acetonitrilewater (60 + 40, v/v) mobile phase. The quick, easy, cheap, effective, rugged, and safe method was used for extraction of 7B3 from cotton plants, which involved the extraction of 10 g homogenized sample with 10 mL acetonitrile, followed by the addition of 4 g anhydrous MgSO4 and 1.0 g NaCl. After centrifugation, 1 mL of the buffered acetonitrile extract was transferred into a tube containing 50 mg primary secondary amine sorbent and 100 mg anhydrous MgSO4. After shaking and centrifugation, the final extract was transferred to an autosampler vial for concurrent analysis by LC/MS. The results of 7B3 determined by LC/MS in the selective ion monitoring mode were linear, and the matrix effect of the method was evaluated. The average recoveries of 7B3 fortified at different levels were within 84.1100.2, and the relative standard deviations were &lt;7.5 for all samples analyzed. The method limit of detection and the limit of quantitation values were 0.03 and 0.1 mg/kg, respectively. The proposed method was successfully applied to determine 7B3 residues in practical samples. This method is sensitive, accurate, reliable, simple, and safe.


Sign in / Sign up

Export Citation Format

Share Document