scholarly journals Molecular Identification of Begomovirus Infecting Angled Luffa

2020 ◽  
Vol 24 (2) ◽  
pp. 147
Author(s):  
Alvina Clara Giovanni ◽  
Sedyo Hartono ◽  
Sri Sulandari ◽  
Susamto Somowiyarjo

Begomovirus was reported as one of the most aggressive and destructive viruses on several commercial crops, including cucurbits in Indonesia. Plants that infected with Begomovirus show the mosaic symptom on the leaves, change in leaf shape, stunts, change in color and shape of fruit. It was recently observed in cultivated angled luffa [Luffa acutangula (L.) Roxb] around Yogyakarta and Central Java. The aim of this research was to identify the virus by using Polymerase chain reaction (PCR). The result of Begomovirus amplification from the total DNA samples amplification using primer Krusty-Homer showed that DNA of Begomovirus from angled luffa was amplified at ~580bp. The DNA sequencing of angled luffa’s leaf isolate GD1 had 97.8% homology with SCLV-China isolate MC1. However, amplification of DNA seed samples using the same primer showed negative result. It was concluded that Begomovirus was not a seed borne virus. This is the first molecular report on the occurence of Begomovirus in angled luffa in Yogyakarta.

Author(s):  
Matthew J. Binnicker ◽  
Glenn D. Roberts ◽  
Nancy L. Wengenack

This chapter reviews diagnostic methods and tests for identifying mycobacterial and fungal organisms. Diagnostic methods include direct examination, staining, culture, molecular identification, DNA sequencing, chromatography, polymerase chain reaction, and immunodiagnostics. Organisms reviewed include Mycobacterium tuberculosis, M kansasii, M marinum, M leprae, M avium, and other mycobacteria; Aspergillus spp; Histoplasma spp; Coccidioides spp; Blastomyces spp; Candida spp; Fusarium spp; Trichophyton spp; and other fungi.


Plant Disease ◽  
1999 ◽  
Vol 83 (5) ◽  
pp. 482-485 ◽  
Author(s):  
Margaret J. Green ◽  
Dan A. Thompson ◽  
Donald J. MacKenzie

A simple and efficient procedure for the extraction of high-quality DNA from phytoplasma-infected woody and herbaceous plants for polymerase chain reaction (PCR) detection is described. This procedure does not require phenol, chloroform, or alcohol for the precipitation of nucleic acids. Herbaceous and woody plant material are extracted in an identical manner with no additional purification or enrichment steps required. The method utilizes commercially available microspin-column matrices, and the extraction of total DNA can be achieved in less than 1 h. The method has been used to successfully purify phytoplasma DNA from whole leaves, leaf petioles and midribs, roots, and dormant wood from a diverse selection of plant material. The phytoplasmas detected by PCR include pear decline, western X-disease, peach yellow leaf roll, peach rosette, apple proliferation, Australian grapevine yellows, and Vaccinium witches'-broom.


Plant Disease ◽  
2010 ◽  
Vol 94 (9) ◽  
pp. 1100-1104 ◽  
Author(s):  
R. T. Lartey ◽  
T. C. Caesar-TonThat ◽  
A. W. Lenssen ◽  
J. Eckhoff ◽  
S. L. Hanson ◽  
...  

Cercospora beticola, the causal agent of Cercospora leaf spot of sugar beet, survives as pseudostromata in infected sugar beet residues in the soil. Under optimal conditions, overwintering propagules germinate and produce conidia that are dispersed as primary inoculum to initiate infection in sugar beet. We developed a polymerase chain reaction (PCR) technique for rapid detection of C. beticola in field soils. Total DNA was first isolated from soil amended with C. beticola culture using the PowerSoil DNA Kit. The purified DNA was subjected to PCR in Extract-N-Amp PCR mix with CBACTIN primers over 35 cycles. The amplified products were resolved and compared by electrophoresis in 1% agarose gels. The PCR fragment size of C. beticola from the amended field soil correlated in size with the amplicon from control C. beticola culture DNA extract. Additionally, sample soils were collected from sugar beet fields near Sidney, MT and Foxholm, ND. Total DNA was extracted from the samples and subjected to PCR and resolved as previously described. The amplicons were purified from the gels and subjected to BigDye Terminator Cycle sequencing. All sequences from field soils samples, C. beticola-amended field soil, and pure culture were compared by alignment with a C. beticola actin gene sequence from GenBank. The result of the alignment confirmed the amplicons as products from C. beticola. Rapid screening for the presence of C. beticola in the soil by PCR will improve research capabilities in biological control, disease forecasting, and management of this very important sugar beet pathogen.


Author(s):  
I Made Oka Riawan ◽  
Gede Iwan Setiabudi ◽  
I Made Merdana ◽  
I Putu Mangku Mariasa ◽  
Kadek Teguh Wirasastra

Stranded Sunfish in North Bali with full body we collect to do molecular identification. Samples were amplified at the d-loop locus (control region) using the PCR (Polymerase Chain Reaction) method. Primers used in PCR are H16498 as primary front (forward) and L15812 as reverse primer. Similarity value of 95% after alignment with Mola ramsayi (accession number accession AY940824) on GenBank, and the gaps of the nucleotide just 1%. The stranded sunfish identified using partial sequence mtDNA is the same species as the species Mola ramsayi.


Sign in / Sign up

Export Citation Format

Share Document