scholarly journals Micropropagation of Mini Orchid Hybrid Phalaenopsis “Sogo Vivien”

2016 ◽  
Vol 1 (1) ◽  
pp. 45 ◽  
Author(s):  
Exsyupransia Mursyanti ◽  
Aziz Purwantoro ◽  
Sukarti Moeljopawiro ◽  
Endang Semiarti

Phalaenopsis “Sogo Vivien” is an orchid hybrid with mini size plant body, and exhibits numerous beautiful pink flowers, that is ideal as ornamental pot plant. Some plants of this orchid exhibit variegated leaves that improve the beauty of the plant, not only because of the flower but also as attracted leaves. This orchid has high economical value, but mass propagation of this orchid has not established yet. An effective method to propagate both the normal and variegated plants is worth to be generated. The objective of this research was to produce a large number of P. “Sogo Vivien” plants, including the variegated plants. The method used seeds from self pollinating variegated plant, and flower stalk nodes. The seeds were sown on three various medium: VW, NP and MS, and flower stalk nodes were planted on VW + BA 10 mg l-1 + active carbon. The results showed that the best medium for in vitro culture of P. “Sogo Vivien” was NP medium, in which all seeds could grew into plantlets. Most plantlets emerged from the seeds were non variegated, only one plantlet out of 1344 seeds was variegated (0.007%). Although all emerged plantlets from flower stalk exhibited variegated leaves. Particularly, the plantlets arised from the second and third basal nodes of flower stalk showed the highest growth rate than that from the other nodes. Histological analysis showed that at 11-13 days after shoot segment plantation on NP medium, the shape of apical cells in the nodes was changed, then followed by the change of cell shape in the basal part of the nodes, produced bipolar pattern, then gradually developed into shoot. These results suggest that mass propagation could be achieved using seed culture, but to get the variegated phenotypes, the second and third nodes of flower stalk from variegated plant were the best explants to be used.

2018 ◽  
Vol 217 (7) ◽  
pp. 2417-2428 ◽  
Author(s):  
Jae-Geun Song ◽  
Matthew R. King ◽  
Rui Zhang ◽  
Rachel S. Kadzik ◽  
Akanksha Thawani ◽  
...  

Microtubules (MTs) must be generated from precise locations to form the structural frameworks required for cell shape and function. MTs are nucleated by the γ-tubulin ring complex (γ-TuRC), but it remains unclear how γ-TuRC gets to the right location. Augmin has been suggested to be a γ-TuRC targeting factor and is required for MT nucleation from preexisting MTs. To determine augmin’s architecture and function, we purified Xenopus laevis augmin from insect cells. We demonstrate that augmin is sufficient to target γ-TuRC to MTs by in vitro reconstitution. Augmin is composed of two functional parts. One module (tetramer-II) is necessary for MT binding, whereas the other (tetramer-III) interacts with γ-TuRC. Negative-stain electron microscopy reveals that both tetramers fit into the Y-shape of augmin, and MT branching assays reveal that both are necessary for MT nucleation. The finding that augmin can directly bridge MTs with γ-TuRC via these two tetramers adds to our mechanistic understanding of how MTs can be nucleated from preexisting MTs.


2016 ◽  
Vol 8 (1) ◽  
pp. 62-68
Author(s):  
Dewi PRAMANIK ◽  
Muhammad PRAMA YUFDY ◽  
Herni SHINTIAVIRA ◽  
Budi WINARTO

Phalaenopsis ‘AMP 17’ is an important orchid commodity in Indonesia with high market demand; however, scaling up the orchid commercially is constrained by the availability and sustainability of qualified seedlings. To overcome the problem, a reliable in vitro propagation protocol, especially via secondary embryogenesis, was undertaken. In the present study, in vitro secondary embryogenesis derived from meta-topoline (mT) treatment on mass propagation of Phalaenopsis ‘AMP 17’ was successfully established. Embryos, as explant sources, were prepared by culturing meristem tips of flower stalk shoots on Murashige and Skoog (MS) medium containing 1.5 mg/L thidiazuron (TDZ) and 0.25 mg/L N6-benzylaminopurine (BAP) for ± 3 months. High secondary somatic embryo (SSE) formation up to 64.90% with 12.30 SSEs regenerated per embryo was determined on half-strength MS augmented with 0.5 mg/L BAP and 2.5 mg/L mT. The combination also stimulated the result of high multiplication rate of SSE formation, up to 10.1 fold on the third subculture, maintained low conversion rate of germinated-embryos down to 55% and improved qualified-growth of the germinated embryos. The mT treatment produced 86% survival plantlets with high qualified-performance. The system could be applied as an alternative method to step forward towards an improved propagation protocol, commercially efficient due to high productivity. Detail findings in each step were discussed.


2011 ◽  
Vol 22 (3) ◽  
pp. 212-217 ◽  
Author(s):  
Mauricia Ferreira de Almeida e Borges ◽  
Carlos Eduardo Saraiva Miranda ◽  
Silvio Rocha Corrêa da Silva ◽  
Melissa Marchesan

Optical microscopy and morphometric analysis were used in this study to evaluate, in vitro, the cleaning of the apical region in root canals with mild or moderate curvatures subjected to biomechanical preparation with a rotary system, as well as to assess the amount of extruded material to the periapical area. Lateral incisors (n = 32), 16 with curvature angles smaller or equal to 10º (GI) and 16 between 11º and 25º angles (GII) were submitted to Hero 642 rotary instrumentation with different surgical diameters: (A) 30.02 and (B) 45.02. Irrigation was performed at each change of instrument with 5 mL of ultrapure Milli-Q water and the extruded material through the apical foramen was collected. Root cross-sections were subjected to histological analysis by optical microscopy (×40) and the images were evaluated morphometrically using the Image Tool software. Quantification of the extruded material was performed by weighing after liquid evaporation. ANOVA showed no statistically significant differences (p>0.05) among the groups with respect to the procedures used to clean the apical region. Considering the amount of extruded material, the Tukey's HSD showed that canals with mild curvature prepared with the 45.02 surgical diameter showed significantly higher values (p<0.05) that those of the other groups, which were similar between themselves (p>0.05). In conclusion, the effect of cleaning the apical region did not differ in the groups, considering root curvature and the surgical diameter of instruments used for apical preparation. The amount of extruded material was greater in canals with mild curvature that were prepared with the 45.02 surgical instrument diameter.


HortScience ◽  
2019 ◽  
Vol 54 (7) ◽  
pp. 1230-1236 ◽  
Author(s):  
Nittaya Chookoh ◽  
Yi-Tien Chiu ◽  
Chen Chang ◽  
Wei-Hsin Hu ◽  
Ting-En Dai

A protocol for plant regeneration via direct induction of protocorm-like bodies (PLBs) from leaf segments of Tolumnia Snow Fairy was developed as a basis for mass production. Ten-month-old, in vitro–grown donor plantlets were obtained by inducing shoots from buds on the flower stalk. Leaf segments harvested from plantlets of different heights and from expanding leaves at different positions were compared, as were two BA concentrations with 0.5 mg·L−1 NAA. The greatest rate of PLB induction (16.7%) was observed when leaf segments taken from 1- to 2-cm height plants were cultured in Murashige and Skoog (MS) basal medium supplemented with 2 mg·L−1 BA and 0.5 mg·L−1 NAA after 16 weeks of culture. When using leaf explants, only inner, expanding leaves cultured on MS basal medium supplemented with 4 mg·L−1 BA and 0.5 mg·L−1 NAA resulted in PLB induction, at an average rate of 25.5 PLBs per explant. After 16 weeks of culture, histological and scanning electron microscopy (SEM) observations revealed that PLBs originated from epidermal cells of leaf explants. PLBs of 1 to ≤2 mm in diameter continued to proliferate after 4 weeks of culture. These secondary PLBs could be produced from either whole PLBs or the upper side of PLBs. Finally, PLBs were regenerated into plantlets. After ≈14 months of culture, fully developed plants exhibiting well-developed roots and shoots were acclimatized. These plants grew well, with 1-year survival rates of nearly 73%, for plants originating as explants taken from 1- to 2-cm tall plants, and of 79%, for plants originating as explants taken from inner leaves. Some mature plants flowered 1 year after transplantation. This study presents a simple system that can provide a large number of PLBs for mass propagation in a short time that can be converted into plants and also used for the new cultivars of Tolumnia orchids.


1973 ◽  
Vol 29 (02) ◽  
pp. 490-498 ◽  
Author(s):  
Hiroh Yamazaki ◽  
Itsuro Kobayashi ◽  
Tadahiro Sano ◽  
Takio Shimamoto

SummaryThe authors previously reported a transient decrease in adhesive platelet count and an enhancement of blood coagulability after administration of a small amount of adrenaline (0.1-1 µg per Kg, i. v.) in man and rabbit. In such circumstances, the sensitivity of platelets to aggregation induced by ADP was studied by an optical density method. Five minutes after i. v. injection of 1 µg per Kg of adrenaline in 10 rabbits, intensity of platelet aggregation increased to 115.1 ± 4.9% (mean ± S. E.) by 10∼5 molar, 121.8 ± 7.8% by 3 × 10-6 molar and 129.4 ± 12.8% of the value before the injection by 10”6 molar ADP. The difference was statistically significant (P<0.01-0.05). The above change was not observed in each group of rabbits injected with saline, 1 µg per Kg of 1-noradrenaline or 0.1 and 10 µg per Kg of adrenaline. Also, it was prevented by oral administration of 10 mg per Kg of phenoxybenzamine or propranolol or aspirin or pyridinolcarbamate 3 hours before the challenge. On the other hand, the enhancement of ADP-induced platelet aggregation was not observed in vitro, when 10-5 or 3 × 10-6 molar and 129.4 ± 12.8% of the value before 10∼6 molar ADP was added to citrated platelet rich plasma (CPRP) of rabbit after incubation at 37°C for 30 second with 0.01, 0.1, 1, 10 or 100 µg per ml of adrenaline or noradrenaline. These results suggest an important interaction between endothelial surface and platelets in connection with the enhancement of ADP-induced platelet aggregation by adrenaline in vivo.


1965 ◽  
Vol 50 (2) ◽  
pp. 301-309 ◽  
Author(s):  
Jürg Müller

ABSTRACT An extract of human urine, which was previously shown to stimulate aldosterone production by rat adrenal sections, was further purified. Evidence was obtained that its aldosterone-stimulating effect was due to the presence of ammonium ions. Addition of ammonium chloride and of urine extract to the incubation medium caused identical increases in aldosterone production in vitro. In addition to ammonium ions, rubidium and caesium ions also stimulated aldosterone production up to 250% that of control values without a significant effect on corticosterone production. Similar dose-response curves were obtained when increasing concentrations of potassium, ammonium, rubidium and caesium ions were tested. Aldosterone production was maximal at concentrations of 7 mval/1 and was significantly lower at higher concentrations. When ammonium chloride and ACTH were simultaneously added to the incubation medium, the production of aldosterone and of corticosterone was lower than with ACTH alone. On the other hand, the stimulating activity on aldosterone and corticosterone production by »TPN« (NADP) and glucose-6-phosphate was enhanced by the simultaneous addition of ammonium chloride.


1974 ◽  
Vol 77 (1) ◽  
pp. 64-70 ◽  
Author(s):  
Gustav Wägar

ABSTRACT Whether the short-term regulation of thyroidal protein synthesis by TSH occurs at the transcriptional or the translational level was tested by measuring the effect of actinomycin D (act D) on the TSH-induced stimulation of L-14C-leucine incorporation into the thyroidal proteins of rats. TSH was injected 6 h before the rats were killed. The thyroid glands were then removed and incubated in vitro in the presence of L-14C-leucine for 2 h. The pronounced stimulation of leucine incorporation in the TSH-treated animals was depressed as compared with controls but still significant even when the animals had been pre-treated with 100 μg act D 24 and 7 h before sacrifice. On the other hand, act D strongly decreased incorporation of 3H-uridine into RNA. Short-term regulation of thyroidal protein synthesis by TSH appears to be partly but not wholly dependent on neosynthesis of RNA. Hence regulation may partly occur at the translation level of protein synthesis.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 557d-557
Author(s):  
Jennifer Warr ◽  
Fenny Dane ◽  
Bob Ebel

C6 volatile compounds are known to be produced by the plant upon pathogen attack or other stress-related events. The biological activity of many of these substances is poorly understood, but some might produce signal molecules important in host–pathogen interactions. In this research we explored the possibility that lipid-derived C6 volatiles have a direct effect on bacterial plant pathogens. To this purpose we used a unique tool, a bacterium genetically engineered to bioluminesce. Light-producing genes from a fish-associated bacterium were introduced into Xanthomonas campestris pv. campestris, enabling nondestructive detection of bacteria in vitro and in the plant with special computer-assisted camera equipment. The effects of different C6 volatiles (trans-2 hexanal, trans-2 hexen-1-ol and cis-3 hexenol) on growth of bioluminescent Xanthomonas campestris were investigated. Different volatile concentrations were used. Treatment with trans-2 hexanal appeared bactericidal at low concentrations (1% and 10%), while treatments with the other volatiles were not inhibitive to bacterial growth. The implications of these results with respect to practical use of trans-2 hexanal in pathogen susceptible and resistant plants will be discussed.


1987 ◽  
Vol 52 (9) ◽  
pp. 2317-2325 ◽  
Author(s):  
Jan Hlaváček ◽  
Jan Pospíšek ◽  
Jiřina Slaninová ◽  
Walter Y. Chan ◽  
Victor J. Hruby

[8-Neopentylglycine]oxytocin (II) and [8-cycloleucine]oxytocin (III) were prepared by a combination of solid-phase synthesis and fragment condensation. Both analogues exhibited decreased uterotonic potency in vitro, each being about 15-30% that of oxytocin. Analogue II also displayed similarly decreased uterotonic potency in vivo and galactogogic potency. On the other hand, analogue III exhibited almost the same potency as oxytocin in the uterotonic assay in vivo and in the galactogogic assay.


1997 ◽  
Vol 62 (11) ◽  
pp. 1804-1814 ◽  
Author(s):  
Marie Stiborová ◽  
Hana Hansíková

Tulip bulbs (Tulipa fosteriana, L.) contain peroxidases catalyzing the oxidation of the xenobiotics N-nitrosodimethylamine (NDMA) and N-nitroso-N-methylaniline (NMA). Three anionic (A1, A2, A3) and four cationic (B, C, D, E) peroxidases were purified from this tissue, partially characterized and used for kinetic studies. Demethylation of NDMA and NMA producing formaldehyde is catalyzed by one anionic (A1) and three cationic (C, D, E) peroxidases. The oxidation of NDMA by tulip peroxidases exhibits the Michaelis-Menten kinetics. The apparent Michaelis constant and the maximal velocity values for this substrate were determined. On the other hand, non-Michaelian kinetics for the NMA oxidation were observed with tulip peroxidases. The most abundant cationic peroxidase (peroxidase C) was used for detailed enzymatic studies. In addition to formation of formaldehyde, methylaniline, aniline, 4-aminophenol and phenol were found to be metabolites formed from NMA. Phenol was formed presumably by N-demethylation via a benzenediazonium ion, while methylaniline, aniline and 4-aminophenol were products of denitrosation of the substrate. The efficiencies of plant peroxidases to oxidize NDMA and NMA in vitro are compared with those of cytochromes P450 and discussed.


Sign in / Sign up

Export Citation Format

Share Document