scholarly journals Experimental and Finite Elements Analysis Study of Warming Effect on Deboned Force for Embedded NiTinol Wire into Linear Low Density Polyethylene

2018 ◽  
Vol 14 (4) ◽  
pp. 1-8
Author(s):  
Samir Ali Amin ◽  
Ali Yasser Hassan

This study presents the debonding propagation in single NiTi wire shape memory alloy into linear low-density polyethylene matrix composite the study of using the pull-out test. The aim of this study is to investigate the pull-out tests to check the interfacial strength of the polymer composite in two cases, with activation NiTinol wire and without activation. In this study, shape memory alloy NiTinol wire 2 mm diameter and linear fully annealed straight shape were used. The study involved experimental and finite element analysis and eventually comparison between them. This pull-out test is considered a substantial test because its results have a relation with behavior of smart composite materials. The pull-out test was carried out by a universal tensile test machine type (Laryee), load capacity (50 kN), and a test speed of 1mm/min. The finite elements modeling was performed by ANSYS V.15. The results of pull-out test showed that in the activation of NiTinol wire embedded in host matrix linear low-density polyethylene (LLDPE), the deboned force was about 74 N, but for the case without activation, it was about 106 N. Deboned shear stress for the case with activation was about 0.73 MPa, but for the case of without activation, it was about 1.05 MPa. ANSYS result for deboned shear stress in case with activation was about 0.8 MPa. As for the case of without activation, deboned shear stress was about 0.99 MPa. The activation of the ratio of deboned shear stress and deboned force decreased by 30.47% and 30.13%, respectively. The error ratio between experimental and ANSYS results was equal to 8% for the case with activation and 5.7% for the case without activation. 

2009 ◽  
Vol 2009 ◽  
pp. 1-11
Author(s):  
G. M. Behery ◽  
A. A. El-Harby ◽  
Mostafa Y. El-Bakry

This paper presents an automatic system of neural networks (NNs) that has the ability to simulate and predict many of applied problems. The system architectures are automatically reorganized and the experimental process starts again, if the required performance is not reached. This processing is continued until the performance obtained. This system is first applied and tested on the two spiral problem; it shows that excellent generalization performance obtained by classifying all points of the two-spirals correctly. After that, it is applied and tested on the shear stress and the pressure drop problem across the short orifice die as a function of shear rate at different mean pressures for linear low-density polyethylene copolymer (LLDPE) at190∘C. The system shows a better agreement with an experimental data of the two cases: shear stress and pressure drop. The proposed system has been also designed to simulate other distributions not presented in the training set (predicted) and matched them effectively.


Polymers ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1537
Author(s):  
Luděk Hynčík ◽  
Petra Kochová ◽  
Jan Špička ◽  
Tomasz Bońkowski ◽  
Robert Cimrman ◽  
...  

Current industrial trends bring new challenges in energy absorbing systems. Polymer materials as the traditional packaging materials seem to be promising due to their low weight, structure, and production price. Based on the review, the linear low-density polyethylene (LLDPE) material was identified as the most promising material for absorbing impact energy. The current paper addresses the identification of the material parameters and the development of a constitutive material model to be used in future designs by virtual prototyping. The paper deals with the experimental measurement of the stress-strain relations of linear low-density polyethylene under static and dynamic loading. The quasi-static measurement was realized in two perpendicular principal directions and was supplemented by a test measurement in the 45° direction, i.e., exactly between the principal directions. The quasi-static stress-strain curves were analyzed as an initial step for dynamic strain rate-dependent material behavior. The dynamic response was tested in a drop tower using a spherical impactor hitting a flat material multi-layered specimen at two different energy levels. The strain rate-dependent material model was identified by optimizing the static material response obtained in the dynamic experiments. The material model was validated by the virtual reconstruction of the experiments and by comparing the numerical results to the experimental ones.


2021 ◽  
Vol 11 (8) ◽  
pp. 3540
Author(s):  
Numfor Linda Bih ◽  
Assia Aboubakar Mahamat ◽  
Jechonias Bidossèssi Hounkpè ◽  
Peter Azikiwe Onwualu ◽  
Emmanuel E. Boakye

The quantity of polymer waste in our communities is increasing significantly. It is therefore necessary to consider reuse or recycling waste to avoid an increase in the risk to public health. This project is aimed at using pulverized low-density polyethylene (LDPE) waste as a source to reinforce and improve compressive strength, and to reduce the water absorption of geopolymer ceramics (GC). Clay:LDPE composition consisting of 5%, 10%, and 15% LDPE was geopolymerized with an NaOH/Na2SiO3 solution and cured at 30 °C and 50 °C. Characterization of the geopolymer samples was carried out using XRF and XRD. The microstructure was analyzed by SEM and chemical bonding by FTIR. The SEM micrographs showed LDPE particle pull-out on the geopolymer ceramics’ fracture surface. The result showed that the compressive strength increases with the addition of pulverized polymer waste compared to the controlled without LDPE addition. Water absorption decreased with an increase in LDPE addition in the geopolymer ceramics composite.


2015 ◽  
Vol 37 (11) ◽  
pp. 3167-3174 ◽  
Author(s):  
S. Sánchez-Valdes ◽  
E. Ramírez-Vargas ◽  
L.F. Ramos de Valle ◽  
J.G. Martinez-Colunga ◽  
J. Romero-Garcia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document