scholarly journals The Influence of Anthropogenic Activities on Macro-Invertearates Assemblage and Water Quality in the Crocodile River (East) Mpumalanga, South Africa

2017 ◽  
Vol 2 (2) ◽  
pp. 124
Author(s):  
Soko MI ◽  
Gyedu-Ababio T

<em>Biological indicators such as macro-invertebrates and water quality parameters can give an overalln overview of what is happening in a river catchment. The aim of the study was to determine the influence of anthropogenic activities on macro-invertebrates assemblage and water quality using multivariate analysis and to determine the present ecological state of the river using the Macro-Invertebrates Response Assessment index. The South African Scoring System Version 5 (SASS 5) was used to collect macro invertebrates. Water quality samples were collected using a polyethylene bottle and analysed by Mpumamanzi Laboratory in Nelspruit and Water lab in Pretoria. From the results obtained it was evident that anthropogenic activities along the Crocodile River play a role in water quality deterioration and the subsequent distribution of macro-invertebrates during high and low flow conditions. The main anthropogenic activities contribute to the influence of macro-invertebrates community and water quality are agricultural activities in the upper reaches and a  combination of industrial, domestic, mining and agricultural activities in the middle and lower reaches of the Crocodile River.</em>

2020 ◽  
Vol 182 ◽  
pp. 109136
Author(s):  
Oana Mare Roșca ◽  
Thomas Dippong ◽  
Monica Marian ◽  
Cristina Mihali ◽  
Lucia Mihalescu ◽  
...  

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1673
Author(s):  
Claude Daou ◽  
Mervat El Hoz ◽  
Amine Kassouf ◽  
Bernard Legube

The primary objective of this study is to explore a water quality database on two Mediterranean rivers (the Kadisha-Abou Ali and El Jaouz rivers—located in north Lebanon), considering their physicochemical, microbiological and fluorescence characteristics. Principal Component Analysis (PCA) was applied to the matrix gathering physicochemical and microbiological data while the Common Components and Specific Weight Analysis (CCSWA) or ComDim was used for fluorescence excitation-emission matrices (EEMs). This approach provided complementary and valuable information regarding water quality in such complex ecosystem. As highlighted by the PCA and ComDim scores, the Kadisha-Abou Ali River is highly influenced by anthropogenic activities because its watershed districts are intensively populated. This influence reveals the implication of organic and bacteriological parameters. To the contrary, the El Jaouz watershed is less inhabited and is characterized by mineral parameters, which determines its water quality. This work highlighted the relationship between fluorescence EEMs and major water quality parameters, enabling the selection of reliable water quality indicators for the studied rivers. The proposed methodology can surely be generalized to the monitoring of surface water quality in other rivers. Each customized water quality fingerprint should constantly be inspected in order to account for any emerging pollution.


2008 ◽  
Vol 57 (8) ◽  
pp. 1295-1300
Author(s):  
Nayana G. M. Silva ◽  
Marcos von Sperling

Downstream of Capim Branco I hydroelectric dam (Minas Gerais state, Brazil), there is the need of keeping a minimum flow of 7 m3/s. This low flow reach (LFR) has a length of 9 km. In order to raise the water level in the low flow reach, the construction of intermediate dikes along the river bed was decided. The LFR has a tributary that receives the discharge of treated wastewater. As part of this study, water quality of the low-flow reach was modelled, in order to gain insight into its possible behaviour under different scenarios (without and with intermediate dikes). QUAL2E equations were implemented in FORTRAN code. The model takes into account point-source pollution and diffuse pollution. Uncertainty analysis was performed, presenting probabilistic results and allowing identification of the more important coefficients in the LFR water-quality model. The simulated results indicate, in general, very good conditions for most of the water quality parameters The variables of more influence found in the sensitivity analysis were the conversion coefficients (without and with dikes), the initial conditions in the reach (without dikes), the non-point incremental contributions (without dikes) and the hydraulic characteristics of the reach (with dikes).


Author(s):  
Shefaliben Sureshbhai Patel ◽  
Susmita Sahoo

The seasonal investigation about the water quality from Damanganga river estuary on two habitats downstream and upstream was carried out from January to December 2019 containing three major seasons: winter, summer and monsoon. For this monitoring activity total 29 parameters (24 physico-chemical parameters and 5 heavy metals) were analyzed. Multivariate analyses suggested inter dependency among these studied parameters. Water Quality Index is computed based on the major fluctuated and affected parameters. The calculated values of WQI for all three seasons ranged from 122.84 to 173.82 which suggested poor water quality of the water body. WQI values of the investigation area proposed that the estuarine water quality is deteriorated due to high value of presented heavy metals (Aluminum, Iron, Manganese, Boron and Zinc), Chloride, Ammonium and Sulfate in water sample. In this case, the downstream station is having accessional pollutant contaminations while the upstream station is having diminutive pollutant contaminants. Temporally, the dominant frailty found during the winter followed by summer and monsoon. This study field exhibited poor quality of water; the reason behind this might be the impressive surrounding industrial zone as well as other anthropogenic activities. There is quite normal probability distribution expressed by the represented water quality data at the both habitats. The Bray-Curtis cluster analysis shows different percentage similarity level between the water quality parameters.  


Author(s):  
Shefaliben Sureshbhai Patel ◽  
Susmita Sahoo

The seasonal investigation about the water quality from Damanganga river estuary on two habitats downstream and upstream was carried out from January to December 2019 containing three major seasons: winter, summer and monsoon. For this monitoring activity total 29 parameters (24 physico-chemical parameters and 5 heavy metals) were analyzed. Multivariate analyses suggested inter dependency among these studied parameters. Water Quality Index is computed based on the major fluctuated and affected parameters. The calculated values of WQI for all three seasons ranged from 122.84 to 173.82 which suggested poor water quality of the water body. WQI values of the investigation area proposed that the estuarine water quality is deteriorated due to high value of presented heavy metals (Aluminum, Iron, Manganese, Boron and Zinc), Chloride, Ammonium and Sulfate in water sample. In this case, the downstream station is having accessional pollutant contaminations while the upstream station is having diminutive pollutant contaminants. Temporally, the dominant frailty found during the winter followed by summer and monsoon. This study field exhibited poor quality of water; the reason behind this might be the impressive surrounding industrial zone as well as other anthropogenic activities. There is quite normal probability distribution expressed by the represented water quality data at the both habitats. The Bray-Curtis cluster analysis shows different percentage similarity level between the water quality parameters.  


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ajay Govind Bhatt ◽  
Anand Kumar ◽  
Priya Ranjan Trivedi

AbstractThis study is conducted along the middle Gangetic floodplain, to investigate the hydrogeochemical characteristics and suitability of groundwater for irrigation and human consumptions. Altogether 65 groundwater samples were collected and analyzed for major ions and water quality parameters. pH of all the samples except 1 is found > 7, which suggests alkaline aquifer condition. Groundwater samples predominately belong to Ca-Mg-HCO3 water type followed by Na-HCO3, Mg-HCO3 and Mg-SO4 water types. Hierarchical cluster analysis (HCA) combines groundwater into two distinct groups, Group 1 is found as less mineralized as the average EC value is found 625.3 μS/cm, while it is found 1375 μS/cm for Group 2. The results of correlation analysis and PCA suggest influence of natural and anthropogenic activities on groundwater. PCA extracts four major PCs which describes 71.7% of total variance. PC1 indicates influence of both lithogenic and anthropogenic activities on groundwater quality. PC2 and PC3 infer natural factors, and PC4 suggests influence of anthropogenic activities on groundwater. Exceeding concentration of F−, Fe and Mn above WHO guidelines are found as major public health concern. WQI of all except 4 groundwater samples suggests excellent to good water quality; however, 23% of the samples are not suitable based on WPI values. Irrigation indices suggest that groundwater is mostly suitable for irrigation; however, 10.7%, 12.3% and 3% samples for RSBC, MAR and KR, respectively, exceed the recommended limits and are unsuitable for irrigation. A proper management strategy and quality assurance is recommended before groundwater consumption and use in the study area.


2015 ◽  
Vol 6 (4) ◽  
pp. 816-830 ◽  
Author(s):  
Upeka Kuruppu ◽  
Ataur Rahman

The Hawkesbury–Nepean River System (HNRS) is one of the most important inland river systems in Australia, which supplies over 90% of Sydney's potable water. In this paper, 25 water quality parameters from nine sampling stations in the HNRS covering a period of 12 years are used to examine the trends in the water quality data in the HNRS. It has been found that there is an overall increasing trend of turbidity, chlorophyll-a, alkalinity, total iron, total aluminium, total manganese and reactive silicate, indicating an overall water quality deterioration in the HNRS during the last decade. The parameters such as phosphorus, suspended solids and ammonical nitrogen do not show any marked change over the period of study. Although an improvement in water quality can be seen at some stations downstream of the undisturbed parts of the catchment, there is a clear trend of increased chemical and physical water quality deterioration at many locations in the HNRS. Better land use planning is recommended to achieve an overall improvement in the water quality of the HNRS in future.


Author(s):  
A. K. Tripathi

Water quality has been considered as one of the major challenges in water resource management. The main reason of degradation of water quality over the years is anthropogenic activities. Also, the monitoring of surface water bodies is a tedious as well as expensive process. For the depiction of water quality in simple and easy to understand terminology Water Quality Index (WQI) is found to be one of the widely used tool. It provides a transparent picture of the status of the pollution of a water body that is why it has been widely accepted by policy makers as well as other concerned authorities. Many WQI models have been developed throughout the world, using various water quality parameters, different techniques to generate subindices and also involving various mathematical techniques for aggregation of subindices. This paper deals with the comparison of various water quality models-based om number of parameters used, methods to generate subindices, aggregation techniques as well as their application and uses.


The present study was conducted to evaluate the environmental impact of thermal effluent sources on the main water quality parameters at the low flow conditions. The low flow causes the flow velocity to be low which causes accumulation of any pollutant source. The study was performed by creating a 2-d model of the last reach of Rosetta branch at winter closure. Delft 3d software is used to create a hydro-dynamic model to simulate the flow pattern within a 5 km of the branch upstream Edfina regulator. Water quality model is coupled afterwards to simulate the water quality parameters. A base case scenario of the current state at the low flow condition is set up and calibrated. Another scenario is performed after adding a thermal pollutant source. Thermal power plant is used as an application of thermal pollutant source. Cooling water is with drawled from an intake and discharged back to the water source with a relatively higher temperature downstream the intake. A case study of Dairut thermal power plant which is planned to be constructed at this area is used. Hydrographic survey is performed to collect essential hydraulic data for the model. Field measurements are performed to collect water quality along the area. A numerical model was set up and the area was simulated. Results showed accumulation of thermal plume. The higher temperatures lowered the dissolved oxygen in the thermal plume area. On the other hand, BOD and NO3 values increased with different rates. Ammonium was positively affected and was lowered.


Sign in / Sign up

Export Citation Format

Share Document