scholarly journals Integration of multivariate statistics and water quality indices to evaluate groundwater quality and its suitability in middle Gangetic floodplain, Bihar

2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Ajay Govind Bhatt ◽  
Anand Kumar ◽  
Priya Ranjan Trivedi

AbstractThis study is conducted along the middle Gangetic floodplain, to investigate the hydrogeochemical characteristics and suitability of groundwater for irrigation and human consumptions. Altogether 65 groundwater samples were collected and analyzed for major ions and water quality parameters. pH of all the samples except 1 is found > 7, which suggests alkaline aquifer condition. Groundwater samples predominately belong to Ca-Mg-HCO3 water type followed by Na-HCO3, Mg-HCO3 and Mg-SO4 water types. Hierarchical cluster analysis (HCA) combines groundwater into two distinct groups, Group 1 is found as less mineralized as the average EC value is found 625.3 μS/cm, while it is found 1375 μS/cm for Group 2. The results of correlation analysis and PCA suggest influence of natural and anthropogenic activities on groundwater. PCA extracts four major PCs which describes 71.7% of total variance. PC1 indicates influence of both lithogenic and anthropogenic activities on groundwater quality. PC2 and PC3 infer natural factors, and PC4 suggests influence of anthropogenic activities on groundwater. Exceeding concentration of F−, Fe and Mn above WHO guidelines are found as major public health concern. WQI of all except 4 groundwater samples suggests excellent to good water quality; however, 23% of the samples are not suitable based on WPI values. Irrigation indices suggest that groundwater is mostly suitable for irrigation; however, 10.7%, 12.3% and 3% samples for RSBC, MAR and KR, respectively, exceed the recommended limits and are unsuitable for irrigation. A proper management strategy and quality assurance is recommended before groundwater consumption and use in the study area.

Author(s):  
Nguyen Hai Au ◽  
Tran Minh Bao ◽  
Pham Thi Tuyet Nhi ◽  
Tat Hong Minh Vy ◽  
Truong Tan Hien ◽  
...  

Groundwater in Phu My town is exploited essentially in Pleistocene aquifer and, used for many purposes like irrigation, domestic, production and animal husbandry. In this study, Groundwater Quality Index (EWQI) is calculated with Entropy weight method to determine the suitability of groundwater quality in study area. This method demonstrates the objectivity of each parameter calculated based on the degree of variability of each value and depends on the sample data source. The groundwater samples were collected from 17 wells in dry and wet seasons in 2017 with ten water quality parameters (pH, TDS, TH, Cl-, F-, NH4+-N, NO3--N, SO42-, Pb và Fe2+) were selected for analysising. The analysis results indicate groundwater quality is divided into 4 categories in this study area. In particular, over 70% of wells are "very good" water quality in both dry and wet seasons. Only 6% of wells are " water unsuitable for drinking purpose" of the total number of mornitoring wells in the study area.


2020 ◽  
Vol 9 (3) ◽  
pp. 237-254
Author(s):  
Maeyan Givi ◽  
◽  
Mahsa Jahangiri-Rad ◽  
Hamidreza Tashauoei ◽  
◽  
...  

Background: The physicochemical composition of groundwater is affected by the quantity and quality of surrounding aquifers which are in turn recharging from adjacent river waters. Methods: In the present study, 20 surface and 16 groundwater samples were collected in pre- and post-monsoon season from the Jajrood River basin, Tehran, Iran. The samples were analyzed for 18 physicochemical water quality characteristics to assess the river and groundwater qualities. Hydrogeochemical analyses of groundwater samples were also performed to determine the Water Quality Index (WQI) for drinking and evaluate factors governing the water quality characteristic in the study area. Accordingly, the Piper diagram and Gibbs and Chadha plots were drawn to assess seasonal variations in hydrochemical facies and processes in the basin. Subsurface soil samples were also examined with respect to the structure, elemental composition, and multi-elemental trace analysis. Results: Results showed the abundance of major ions in the order of Ca+2 >Na+>Mg+2>K+ for cations and HCO3- >SO42- >Cl- >NO3- >F- for anions. In general, all drinking groundwater samples met WHO permissible limits except for Chemical Oxygen Demand (COD) and HCO3-. Moreover, the water is categorized as Ca-Mg-HCO3 type. Subsurface soil analyses demonstrated quartz and calcium carbonate as the main phases of soil structure, suggesting the enrichment of groundwater with temporary hardness. Conclusion: Overall, the groundwater quality was suitable for drinking and agricultural activities.


2021 ◽  
Vol 30 (3) ◽  
pp. 546-561
Author(s):  
K. Mohammed Rizwan ◽  
V. Thirukumaran ◽  
M. Suresh

The aims of the current research are to assess the drinking water quality of the groundwater in the Gadilam River Basin, which is located in the northern part of Tamil Nadu, by identifying the groundwater quality index and examine its suitability for drinking. The current work determines the levels of groundwater quality parameters based on 120 groundwater samples; 50 samples from Archaean formation, 34 samples from Quaternary formation, 35 samples from Tertiary formation and the remaining sample from Cretaceous formation. Additionally, this research compares the determined levels with the various standards for drinking. Furthermore, the variability of parameters of the groundwater quality is explored in this paper by using the spatial interpolation method. The conclusion of this research reveals that the groundwater quality parameters such as Calcium (Ca2+), Magnesium (Mg2+), Nitrate (NO32-), Fluoride (F-), Sulphate (SO42-), Bi-carbonate (HCO3-) and Percentage of Hydrogen (pH) values are observed to be within the limiting value for WHO 2017 in all the formations during the seasons in which they were taken. The water quality index (WQI) values of the Archaean, Quaternary and Tertiary formations are found to be less than 100 meq/L in all stations in both seasons. In order of WQI, these stations come under the category of “Excellent” and “Good”. The Piper trilinear classification of groundwater samples fall in the field of mixed Ca-Mg-Cl, and No dominance, some of the samples represent Na-K, Cl types of water.


2020 ◽  
Vol 8 (4) ◽  
pp. 11-23 ◽  
Author(s):  
Abdelkader Bouderbala

AbstractGroundwater quality in the alluvial aquifer of Wadi Hachem, Tipaza, was assessed for drinking and irrigation purposes. This alluvial plain covers an area of 13 km² and lies in a semiarid climate. Groundwater is the major source for domestic and agricultural water activities in this region, and it is facing natural conditions and anthropogenic activities. The groundwater quality was evaluated on the basis of its physicochemical parameters for the dry period of 2015. The results of these parameters were compared with WHO and Algerian standards recommended for drinking water. The water quality was found to be slightly alkaline, with moderate water quality for drinking based on Total Hardness (TH), Electrical Conductivity (EC) and Total Dissolved Solids (TDS), and all water samples were within the permissible limit for drinking and irrigation purposes. The samples also showed two water types, Ca- HCO3 for the majority of samples, that characterize natural water quality controlled generally by the recharge area and by geological influences and Ca-Cl water type for one sample that is likely influenced mainly by anthropogenic activities, which was affirmed by the higher values of EC, TDS and of some ion concentrations. The analytical data plotted on Riverside and Wilcox diagrams illustrated high and very high salinity, and low sodium hazard rendering groundwater usable only on soils with good permeability.


2019 ◽  
Vol 68 (7) ◽  
pp. 509-522 ◽  
Author(s):  
Afshin Honarbakhsh ◽  
Aliasghar Azma ◽  
Fahime Nikseresht ◽  
Milad Mousazadeh ◽  
Mobin Eftekhari ◽  
...  

Abstract Groundwater quality assessment is vital to protect this resource. Therefore, the aims of this study were to evaluate the hydro-chemical quality of the Marvdasht aquifer located in the semi-arid region of Iran and to map the groundwater quality parameters. For this purpose, a mean data of 11 groundwater quality parameters collected from 49 wells (2010–2015) were used. Pie, Schoeller and Piper diagrams were used to determine the dominant ions and type of water. Ion ratios and Gibbs diagrams were used to illustrate the chemistry and processes in the groundwater. Spatial distribution of quality parameters were mapped using ArcGIS. Results showed that the water type is Na-Cl and Cl− with abundance orders of CL− > SO42− > HCO3− and Na+ with abundance orders of Na+ > Mg2 + >Ca2+ > K+ are dominant anion and cation, respectively. Gibbs diagrams revealed that geological formations control the groundwater chemistry in 66% of the groundwater samples. Based on the Wilcox diagram, only 24% of the samples fell into the C4–S4 class with high salinity and alkalinity hazard. The maps showed that generally groundwater in the north of the study site has better quality than that the south of the study site, where the existence of dolomite and chalky formations leads to decreasing water quality.


Author(s):  
Ekha Yogafanny ◽  
Ardian Novianto ◽  
Rika Ernawati ◽  
Wibiana Wulan Nandari

Jambakan is a hamlet in Bayat District, Central Java Province, Indonesia, which commonly has brackish groundwater. Its unique geological profile leads to variation in groundwater quality that is even found between adjacent wells. This study was designed to identify the quality and hydrochemical type of groundwater and the distribution of brackish groundwater in Jambakan. It employed a quantitative method to analyzethe data collected in the field survey and groundwater quality data (major ions). Meanwhile, the hydrochemical facies of groundwater was interpreted from the plots of major ions on trilinear and quadrilateral Piper diagrams. The results showed that some of the groundwater quality parameters in six wells, namely A6, A34, A38, A65, A67, and A73, had exceeded the standard thresholds. The parameters in question were TDS, EC, salinity, sodium, calcium, chloride, sulfate, magnesium, and hardness. Compared with the six wells, A40 and A45 had better quality. The distribution of brackish groundwater could not be modeled horizontally because salinity highly depends on rock layers where the observed wells are located. Based on the trilinear Piper plots, the groundwater consisted of four hydrochemical facies, namely magnesium bicarbonate, a mixed type, calcium chloride, and sodium chloride. Meanwhile, the quadrilateral Piper diagrams showed the presence of Type I (bicarbonate water), Type II (semi-bicarbonate water), Type III (evaporite water), and Type IVb-IVc (sulfate water) in the groundwater of Jambakan Hamlet.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Kyoochul Ha ◽  
Eunhee Lee ◽  
Hyowon An ◽  
Sunghyun Kim ◽  
Changhui Park ◽  
...  

This study was conducted to evaluate seasonal groundwater quality due to groundwater pumping and hydrochemical characteristics with groundwater level fluctuations in an agricultural area in Korea. Groundwater levels were observed for about one year using automatic monitoring sensors, and groundwater uses were estimated based on the monitoring data. Groundwater use in the area is closely related to irrigation for rice farming, and rising groundwater levels occur during the pumping, which may be caused by the irrigation water of rice paddies. Hydrochemical analysis results for two separate times (17 July and 1 October 2019) show that the dissolved components in groundwater decreased overall due to dilution, especially at wells in the alluvial aquifer and shallow depth. More than 50% of the samples were classified as CaHCO3 water type, and changes in water type occurred depending on the well location. Water quality changes were small at most wells, but changes at some wells were evident. In addition, the groundwater quality was confirmed to have the effect of saltwater supplied during the 2018 drought by comparison with seawater. According to principal component analysis (PCA), the water quality from July to October was confirmed to have changed due to dilution, and the effect was strong at shallow wells. In the study areas where rice paddy farming is active in summer, irrigation water may be one of the important factors changing the groundwater quality. These results provide a qualitative and quantitative basis for groundwater quality change in agricultural areas, particularly rice paddies areas, along with groundwater level and usage.


2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Sadik Mahammad ◽  
Aznarul Islam

AbstractIn recent years, groundwater pollution has become increasingly a serious environmental problem throughout the world due to increasing dependency on it for various purposes. The Damodar Fan Delta is one of the agriculture-dominated areas in West Bengal especially for rice cultivation and it has a serious constraint regarding groundwater quantity and quality. The present study aims to evaluate the groundwater quality parameters and spatial variation of groundwater quality index (GWQI) for 2019 using the fuzzy analytic hierarchy process (FAHP) method. The 12 water quality parameters such as pH, TDS, iron (Fe−) and fluoride (F−), major anions (SO42−, Cl−, NO3−, and HCO3−), and cations (Na+, Ca2+, Mg2+, and K+) for the 29 sample wells of the study area were used for constructing the GWQI. This study used the FAHP method to define the weights of the different parameters for the GWQI. The results reveal that the bicarbonate content of 51% of sample wells exceeds the acceptable limit of drinking water, which is maximum in the study area. Furthermore, higher concentrations of TDS, pH, fluoride, chloride, calcium, magnesium, and sodium are found in few locations while nitrate and sulfate contents of all sample wells fall under the acceptable limits. The result shows that 13.79% of the samples are excellent, 68.97% of the samples are very good, 13.79% of the samples are poor, and 3.45% of the samples are very poor for drinking purposes. Moreover, it is observed that very poor quality water samples are located in the eastern part and the poor water wells are located in the northwestern and eastern part while excellent water quality wells are located in the western and central part of the study area. The understanding of the groundwater quality can help the policymakers for the proper management of water resources in the study area.


2020 ◽  
Vol 182 ◽  
pp. 109136
Author(s):  
Oana Mare Roșca ◽  
Thomas Dippong ◽  
Monica Marian ◽  
Cristina Mihali ◽  
Lucia Mihalescu ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
pp. 203-219
Author(s):  
Wei Li ◽  
Xiaohong Chen ◽  
Linshen Xie ◽  
Gong Cheng ◽  
Zhao Liu ◽  
...  

AbstractGroundwater chemical evolution is the key to ensuring the sustainability of local society and economy development. In this study, four river sections and 59 groundwater wells are investigated in the Longgang River (L.R.) basin in South China. Comprehensive hydrochemical analysis methods are adopted to determine the dominant factors controlling the chemical evolution of the local phreatic groundwater and the potential impact of human activities on groundwater quality. The results indicate that the ionic composition of the local phreatic groundwater is dominated by Ca2+ (0.9–144.0 mg/L), HCO3− (4.4–280.0 mg/L), and SO42− (1.0–199.0 mg/L). Ca–Mg–HCO3, Ca–Na–HCO3, and Na–Ca–HCO3 are the major groundwater hydrochemical facies. Water–rock interactions, such as the dissolution of calcite and dolomite, are the primary source of the major ions in the local groundwater. Cation-exchange reaction has its effects on the contents of Ca2+, Mg2+, and Na+. Ammonia concentration of the sampling sections in the L.R. increases from 0.03 to 2.01 mg/L along the flow direction. Groundwater nitrate in the regions of the farmland is attributed to the lowest level of the groundwater quality standards of China, while the same test results are obtained for heavy metals in the industrial park and landfill, suggesting a negative impact of the anthropogenic activities on the local phreatic groundwater quality.


Sign in / Sign up

Export Citation Format

Share Document