scholarly journals Study of Periplaneta Americana Microbial Community Structure and Diversity by 16S rRNA High-Throughput Sequencing

2017 ◽  
Vol 2 (4) ◽  
pp. 350
Author(s):  
Zhuang Zhi Chen ◽  
Xiu Mei Wu ◽  
Yong Mei Shen ◽  
Cheng Gong Li ◽  
Kai Ge Xu ◽  
...  

<p><strong><em>Objective: </em></strong><em>The present study probes into the microbial community structure in Periplaneta americana under different breeding conditions, using 16S rRNA high-throughput sequencing technique, in the hope of finding the microbial community structure in Periplaneta americana and their diversity under different breeding conditions. </em></p><p><strong><em>Methods:</em></strong><em> In this study, we extract the microbial metagenomic DNA of 5 groups of Periplaneta americana which under different breeding conditions. Using lllumina Miseq sequencing platform, two-terminal sequencing of V3-V4 regions of 16S rRNA were sequenced; diversity of community structure was analyzed using the softwares such as fastqc, </em><em>QIIME, </em><em>PyNAST, fasttree and R language.</em></p><p><strong><em>Results: </em></strong><em>Shannon index of samples in SG group was lower than that of the other four groups, significantly lower than that of DB group (P&lt;0.05), but not significantly different from other groups. This suggested that the intake of a mixed fodder with high sugar, high fat and high protein by Periplaneta americana can reduce the diversity of microbial communities. Our findings showed that breeding intervention with different fodders may cause differences in the contents of Bacteroidetes, Proteobacteria and Firmicutes in Periplaneta americana. Results showed that long-term intake of lots of sucrose and fat may increase the proportion of Bacteroidetes in Periplaneta americana; and long-term intake of lots of sucrose may reduce the proportion of Proteobacteria in Periplaneta americana; and long-term intake of lots of fat may reduce the proportion of Firmicutes in Periplaneta americana. Two major dominant bacterial genera in all samples were Blattabacterium and Rickettsiella. But different feeding interventions can change the proportions of Blattabacterium and Rickettsiella.</em></p><p><strong><em>Conclusion:</em></strong><em> Periplaneta americana has a complex microbial community structure. Different feeding conditions may change the microbial community structure of Periplaneta americana. An important bacterial genus in Periplaneta americana, Blattabacterium is positively correlated with the intake of sucrose- and fat-rich fodder. In the breeding process of Periplaneta americana, adding sucrose and fat to fodder may increase the content and proportion of Blattabacterium in microbial communities.</em></p>

2021 ◽  
Author(s):  
Yanbo Liu ◽  
Mengxiao Sun ◽  
Pei Hou ◽  
Wenya Wang ◽  
Xiangkun Shen ◽  
...  

Abstract In this study, the pit mud used in manufacturing Taorong-type Baijiu was collected from the upper, middle, lower and bottom layers of pits in Henan Yangshao Liquor Co., LTD. Besides, high-throughput sequencing (HTS) technology was adopted to analyze the microbial community structure of the pit mud. In addition, the volatile compounds in the pit mud were subjected to preliminarily qualitative analysis through headspace-solid phase microextraction (HS-SPME) and gas chromatography-mass spectrometry (GC-MS). The results of HTS demonstrated that there were 5, 3, 5 and 5 dominant bacterial phyla (including 11, 11, 9 and 8 dominant bacterial genera) and 3, 3, 3 and 3 dominant fungal phyla (including 4, 7, 7 and 5 dominant fungal genera) in the pit mud from F-S (upper), G-Z (middle), H-X (lower) and I-D (bottom), respectively. The qualitative analysis results of volatile compounds demonstrated that a total of 78 kinds of volatile compounds were detected in the pit mud, including 46, 45, 39 and 49 kinds in the pit mud from F-S, G-Z, H-X and I-D, respectively. Ester and acid were the two main components in the pit mud. Meanwhile, the correlation between microorganisms and main volatile compounds in the pit mud was analyzed. Moreover, Lentimicrobium, Syner-01 and Blvii28_wastewater-sludge group were found for the first time in the pit mud used for manufacturing Taorong-type Baijiu. The findings of this study could provide a theoretical foundation for improving the quality of pit mud and the flavor of Taorong-type Baijiu.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Zhourui Liang ◽  
Fuli Liu ◽  
Wenjun Wang ◽  
Pengyan Zhang ◽  
Xiutao Sun ◽  
...  

Abstract Background Caulerpa lentillifera is one of the most important economic green macroalgae in the world. Increasing demand for consumption has led to the commercial cultivation of C. lentillifera in Japan and Vietnam in recent decades. Concomitant with the increase of C. lentillifera cultivation is a rise in disease. We hypothesise that epiphytes or other microorganisms outbreak at the C. lentillifera farm may be an important factor contributing to disease in C. lentillifera. The main aims are obtaining differences in the microbial community structure and diversity between healthy and diseased C. lentillifera and key epiphytes and other microorganisms affecting the differences through the results of high-throughput sequencing and bioinformatics analysis in the present study. Results A total of 14,050, 2479, and 941 operational taxonomic units (OTUs) were obtained from all samples using 16S rDNA, 18S rDNA, and internal transcribed spacer (ITS) high-throughput sequencing, respectively. 16S rDNA sequencing and 18S rDNA sequencing showed that microbial community diversity was higher in diseased C. lentillifera than in healthy C. lentillifera. Both PCoA results and UPGMA results indicated that the healthy and diseased algae samples have characteristically different microbial communities. The predominant prokaryotic phyla were Proteobacteria, Planctomycetes, Bacteroidetes, Cyanobacteria, Acidobacteria, Acidobacteria and Parcubacteria in all sequences. Chlorophyta was the most abundant eukaryotic phylum followed by Bacillariophyta based on 18S rDNA sequencing. Ascomycota was the dominant fungal phylum detected in healthy C. lentillifera based on ITS sequencing, whereas fungi was rare in diseased C. lentillifera, suggesting that Ascomycota was probably fungal endosymbiont in healthy C. lentillifera. There was a significantly higher abundance of Bacteroidetes, Cyanobacteria, Bacillariophyta, Ulvales and Tetraselmis in diseased C. lentillifera than in healthy C. lentillifera. Disease outbreaks significantly change carbohydrate metabolism, environmental information processing and genetic information processing of prokaryotic communities in C. lentillifera through predicted functional analyses using the Tax4Fun tool. Conclusions Bacteroidetes, Cyanobacteria, Bacillariophyta, Ulvales and Tetraselmis outbreak at the C. lentillifera farm sites was an important factor contributing to disease in C. lentillifera.


2018 ◽  
Vol 78 (11) ◽  
pp. 2338-2348 ◽  
Author(s):  
Chongjun Chen ◽  
Min Zhang ◽  
Xuliang Yu ◽  
Juan Mei ◽  
Ying Jiang ◽  
...  

Abstract Effects of different C/N (NO2–N) ratios on nitrogen removal and microbial community structure were investigated using an anaerobic baffled reactor (ABR). Results indicated that the C/N ratio exerted an important effect on nitrogen removal in the anammox-coupling-denitrification process associated with the ABR. When the C/N ratio was 1.29, the ABR could achieve the highest total nitrogen (TN) removal efficiency of 99.9%. Most of TN was removed in the 1st and 2nd compartment, accounting for about 81.0–97.6% of total TN removal. The nitrogen removal resulted from the interaction among anammox, heterotrophic denitrificans, and other microbes within the ABR. The contribution of anammox to nitrogen removal varied from 6.8% to 32.4%. High-throughput MiSeq sequencing analyses revealed that the C/N ratio was one of the most important factors regulating the microbial community structure, and the predominant phylum changed from Proteobacteria to Chloroflexi with the elevated C/N ratio. In addition, the Candidatus Brocadia was the major anammox bacterium, and its percentage varied from 1.0–2.9% at day 9 to 2.8–9.1% at day 46.


2018 ◽  
Vol 156 (7) ◽  
pp. 857-864 ◽  
Author(s):  
H. M. Tang ◽  
Y. L. Xu ◽  
X. P. Xiao ◽  
C. Li ◽  
W. Y. Li ◽  
...  

AbstractThe response of soil microbial communities to soil quality changes is a sensitive indicator of soil ecosystem health. The current work investigated soil microbial communities under different fertilization treatments in a 31-year experiment using the phospholipid fatty acid (PLFA) profile method. The experiment consisted of five fertilization treatments: without fertilizer input (CK), chemical fertilizer alone (MF), rice (Oryza sativaL.) straw residue and chemical fertilizer (RF), low manure rate and chemical fertilizer (LOM), and high manure rate and chemical fertilizer (HOM). Soil samples were collected from the plough layer and results indicated that the content of PLFAs were increased in all fertilization treatments compared with the control. The iC15:0 fatty acids increased significantly in MF treatment but decreased in RF, LOM and HOM, while aC15:0 fatty acids increased in these three treatments. Principal component (PC) analysis was conducted to determine factors defining soil microbial community structure using the 21 PLFAs detected in all treatments: the first and second PCs explained 89.8% of the total variance. All unsaturated and cyclopropyl PLFAs except C12:0 and C15:0 were highly weighted on the first PC. The first and second PC also explained 87.1% of the total variance among all fertilization treatments. There was no difference in the first and second PC between RF and HOM treatments. The results indicated that long-term combined application of straw residue or organic manure with chemical fertilizer practices improved soil microbial community structure more than the mineral fertilizer treatment in double-cropped paddy fields in Southern China.


2021 ◽  
Vol 11 ◽  
Author(s):  
Lin Chen ◽  
Zhengli Wang ◽  
Lili Ji ◽  
Jiamin Zhang ◽  
Zhiping Zhao ◽  
...  

Mianning ham, a traditional Chinese dry-cured ham, is protected by national geographical indications. To understand the surface and internal flavor composition and microbial community structure of Mianning ham, solid phase microextraction-gas chromatography (SPME-GC-MS) technology and Illumina high-throughput sequencing were utilized. The results showed that a total of 60 flavor substances were identified in the hams. Forty-nine kinds of flavorings were identified on the surface, including 14 aldehydes, 6 ketones, 10 alcohols, 5 esters, 7 hydrocarbons, 5 acids, and 2 other compounds. Thirty-six kinds of internal flavorings were identified, including 13 aldehydes, 4 ketones, 6 alcohols, 3 esters, 5 hydrocarbons, 4 acids and 1 other type. Decanal (34.91 μg/g) was the most prevalent compound on the surface, followed by n-hexanol (24.99 μg/g), n-hexanal (20.20 μg/g), and n-octyl (16.14 μg/g). n-Hexanal (20.74 μg/g) was the most common compound internally, followed by non-aldehyde (5.70 μg/g), 1-octene-3-alcohol (3.54 μg/g), and inverse-2-octenal (2.77 μg/g). Penicillium lanosum, Penicillium nalgiovense, Debaryomyces hansenii, Staphylococcus equorum, and Erwinia tasmaniensis were isolated from the surfaces of the hams by the traditional culture method. By Illumina high-throughput sequencing, three fungal phyla were identified. Ascomycota was the dominant phylum followed by Basidiomycota. At the genus level, 11 fungi were identified, of which Aspergillus was the dominant fungus, followed by Penicillium and Wallemia. These findings provide fundamental knowledge regarding the microorganisms and flavor compounds in Mianning ham, which will help industrial processors develop effective strategies for standardizing quality parameters.


Author(s):  
Yinghai Wu ◽  
Xinyu Rong ◽  
Cuiya Zhang ◽  
Renduo Zhang ◽  
Tao He ◽  
...  

The toxicity of nanomaterials to microorganisms is related to their dose and environmental factors. The aim of this study was to investigate the shifts in the microbial community structure and metabolic profiles and to evaluate the environmental factors in a laboratory scale intertidal wetland system exposed to zinc oxide nanoparticles (ZnO NPs). Microbial assemblages were determined using 16S rRNA high-throughput sequencing. Community-level physiological profiles were determined using Biolog-ECO technology. Results showed Proteobacteria was the predominant (42.6%–55.8%) phylum across all the sediments, followed by Bacteroidetes (18.9%–29.0%). The genera Azoarcus, Maribacter, and Thauera were most frequently detected. At the studied concentrations (40 mg·L−1, 80 mg·L−1, 120 mg·L−1), ZnO NPs had obvious impacts on the activity of Proteobacteria. Adverse effects were particularly evident in sulfur and nitrogen cycling bacteria such as Sulfitobacter, unidentified_Nitrospiraceae, Thauera, and Azoarcus. The alpha diversity index of microbial community did not reflect stronger biological toxicity in the groups with high NP concentrations (80 mg·L−1, 120 mg·L−1) than the group with low NP concentration (40 mg·L−1). The average well color development (AWCD) values of periodically submersed groups were higher than those of long-term submersed groups. The group with NP concentration (40 mg·L−1) had the lowest AWCD value; those of the groups with high NP concentrations (80 mg·L−1, 120 mg·L−1) were slightly lower than that of the control group. The beta diversity showed that tidal activity shaped the similar microbial community among the periodically submerged groups, as well as the long-term submerged groups. The groups with high DO concentrations had higher diversity of the microbial community, better metabolic ability, and stronger resistance to ZnO NPs than the groups with a low DO concentration.


Sign in / Sign up

Export Citation Format

Share Document