scholarly journals FORMULATION DEVELOPMENT AND IN VITRO EVALUATION OF CURCUMIN-LOADED SOLID SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEM FOR COLON CARCINOMA

Author(s):  
CHENMALA KARTHIKA ◽  
RAMAN SURESHKUMAR ◽  
AMEER SUHAIL

Objective: Cancer is the deadliest disease affecting the life of the people all around the world. Colon cancer is the cancer which is affecting the colon region it is the last part of the gastrointestinal tract which is mainly responsible for the absorption of water and minerals from the food debris. Colon cancer is the second most cancer creating death in the world. It affects both male and female equally. Curcumin is a flavonoid used from decades for the treatment of various ailments including cancer. This present work is to formulate Self-nanoemulsifying drug delivery (SNEDDS) system with the help of curcumin for colon delivery. Materials and Methods: Nanoemulsion was prepared using the curcumin pre-concentrated self-nanoemulsifying drug delivery system, with which tablets were prepared and coated with pectin followed by the evaluation test such as in vitro dissolution and cell line studies. Results: Solubility profile of curcumin was found with a greater impact using Capmul MCM and Labrafac PG which is then added with the surfactants and co-surfactants and were converted into Nano-droplets. F1 formulation was selected after carrying out the characterisation studies and converted into a tablet dosage form and then coated with pectin, in vitro studies depicted a release of 80% in pH 6.8. Conclusions: Formulation of a solid self-Nano emulsifying drug delivery system using curcumin was successfully carried out. From the results obtained, the formulation (F1) was selected for the formation of the tablets and the further experimental part is carried out. The tablet dosage form is then coated with pectin and used for targeting the colon cancer cells for its treatment.

INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 16-26
Author(s):  
V Suthar ◽  
◽  
M Gokel ◽  
S Butani ◽  
A Solanki

The aim of the present study was to develop self-emulsifying drug delivery system (SEDDS) of aceclofenac for potential improvement in the in vitro dissolution. The Food and Drug Control Agency (FDCA) has put more stress on the quality, safety and efficacy of the dosage form. The use of design of experiments and quality by Design (QbD) in the development of self emulsifying drug delivery system (SEDDS) containing aceclofenac is demonstrated. The optimum formulation contained Labrafil M 1944 CS, Tween 80 and Transcutol P. The systematic approach enabled us in identifying the design space. The results revealed that while devising the control strategies during manufacturing, more attention should be focused on the ratios of oil to surfactant and surfactant to co-surfactant. The drug was released at a faster rate due to a large surface area. The current approach enabled us to develop a dosage form which is economic, patient-friendly and does not require assistance of a doctor or nurse, especially at remote places at odd hours.


2020 ◽  
Vol 10 (4-s) ◽  
pp. 100-107
Author(s):  
Kunjan Gandhi ◽  
Sunil Kumar Shah ◽  
C K Tyagi ◽  
Prabhakar Budholiya ◽  
Harish Pandey

The present research work was carried out to Formulate and evaluation of bilayer tablet dosage form for the treatment of Hypertension.The objective of this study to compare the specific characteristics of Metoprolol [beta selective (cardio selective) adrenoreceptor blocking agent] and Hydrochlorothiazide (Thiazide Diuretics]) in order to design stable formulation. It can be concluded that bilayer tablet were successfully formulated to achieve immediate release of Hydrochlorothiazide (HCTZ)  and tailored release of Metoprolol (MPL)by using Dual Release Drug Absorption System(DUREDAS technology).Both drugs were found to be stable in Bilayer tablet formulation and were found to be stable for few months. This bilayer tablet dosage form increases the stability which may reduce loss and cost of formulation. It improves the benefits of producer, retailer, and patients. Recently, greater attention has been focused on development of bilayer tablet formulations. Over the past 30 years, the expenses and complications involved in marketing new drug entities have increased with concomitant recognition of therapeutic advantages of conventional drug delivery system. Several pharmaceutical companies are currently developing bi-layer tablets, for a variety of reasons: patent extension, efficient pharmacological effect, better patient compliance, etc. Bilayer tablet is becoming new approach for the successful drug delivery system and for better stability in combination. Bilayer tablets can be primary option to avoid chemical incompatibilities between APIs by physical separation. Keywords: Bilayer tablet, DUREDAS Technology, Antihypertensive, Metoprolol, Hydrochlorthiazide


2015 ◽  
Vol 7 (1-2) ◽  
pp. 65-74
Author(s):  
K. Latha ◽  
V. V. Srikanth ◽  
S. A. Sunil ◽  
N. R. Srinivasa ◽  
M. U. Uhumwangho ◽  
...  

The objective of this investigation is to study the applicability of gum karaya, the natural gum for the preparation and in vitro evaluation of losartan potassium, as Chronotherapeutic Drug Delivery System (ChDDS). The compression-coated timed-release tablets (CCT) containing losartan potassium in the core tablet were prepared by dry coating technique with different ratios of gum karaya as the outer coat. The parameters investigated were tensile strength, friability, in vitro dissolution studies and drug concentration. The optimized formulation was further characterized by powder XRD and FTIR to investigate interactions and no interactions observed. The tensile strength and friability of all the CCT were between 1.06-1.23 MN/m2 and < 0.3% respectively.  All the CCT showed a clear lag time before a burst release of drug. However, the lag time of drug release increased as the amount of gum karaya in the outer layer increased. For instance, the lag time of LGK1, LGK2, LGK3, LGK4, LGK5, LGK6 and LGK7 were 16, 10.5, 5.5, 3, 2, 1.5 and 0.5 hrs respectively.  The drug content of all the CCT was >98%. Formulation LGK3 was taken as an optimized formulation which can be exploited to achieve ChDDS of losartan potassium for the treatment of hypertension. 


Author(s):  
RIZKA KHOIRUNNISA GUNTINA ◽  
IYAN SOPYAN ◽  
ADE ZUHROTUN

A drug delivery system is a system in which a drug is released from a pharmaceutical dosage form to achieve the desired pharmacological effect. The system consists of conventional and new drug delivery systems. In the new drug delivery system, polymers are used as a matrix. The aim of this article is to find out and understand the formulation and evaluation of natural ingredients that have anticancer activity with different dosage forms and the basis for developing these dosages. Journal searches in this review came from primary data sources on the internet. Journal searches were carried out using a search engine such as Google Scholar, PubMed, and ScienceDirect. In recent years, natural products, such as extract, fraction, and isolate, are getting attention to help treat cancer. Because of their low solubility and bioavailability, the effectiveness tends to be lower than synthetic drugs. Therefore, a dosage form with a new drug delivery system was made to overcome the problem. The dosage forms commonly made are patch, suspension, powder, and emulsion with a new drug delivery system. To ensure the product that has been made met the requirements, they need to be evaluated with various methods like In vitro Study, morphology study, particle size study, and others. Cancer treatment using the natural product can be delivered through several dosage forms like patch, suspension, powder, and emulsion, with specific formulation and manufacturing methods based on several considerations such as natural ingredients properties, dosage form selection, excipient properties, and the purpose of the formulation. Dosage forms that has been made are then evaluated using several evaluation methods.


INDIAN DRUGS ◽  
2020 ◽  
Vol 57 (08) ◽  
pp. 53-60
Author(s):  
Purushottam Patil ◽  
Malik Shaikh ◽  
Paresh Mahaparale

Solid self-micro emulsification technique is the new approach for poorly water-soluble and poorly bioavailable drugs by allowing the drug substance to be incorporated into the oil phase and thus having the ability to permeate the GI membrane to a faster extent. Oleic acid, Tween 80, methanol and colloidal silicon dioxide were used as penetrant, surfactant, co-surfactant and adsorbent, respectively. The interaction between drug and excipients was examined by differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). The results of DSC and FTIR studies did not reveal any possible drug-excipient interactions. The conversion of liquid self-microemulsifying drug delivery system (SMEDDS) into the solid SMEDDS increases the stability of the emulsion formulation achieved by physical adsorption of an adsorbent material. The release of drug from SMEDDS formulation is justified by in-vitro dissolution studies. SMEDDS increases the solubility of the drug and improves the bioavailability, without disturbing gastrointestinal transit. SMEDDS has the potential to provide a useful oral solid dosage form for the poorly water-soluble drug ziprasidone.


Author(s):  
PAMU SANDHYA

Objective: The main objective of this study was to preparation and evaluation of efavirenz (EFV) to enhance its solubility and dissolution rate by self-emulsifying drug delivery system. Methods: EFV self-emulsifying drug delivery systems (SNEDDS) were formulated using different oils, surfactant, and co-surfactant. Peceol, Tween 20, and Capmul MCM were used as oil, surfactant, and co-surfactant, respectively, followed by the evaluation by the performance of different tests such as visual observation, solubility studies, thermodynamic stability study, transmittance studies, drug content, and in-vitro release study. Results: Fourier-transform infrared studies revealed negligible drug and polymer interaction. From the phase diagram, it was observed that self-emulsifying region was enhanced with increasing surfactant and co-surfactant concentrations with oil. F13 was selected as optimized formulation on the basis of physicochemical parameters, particle size, and in-vitro dissolution studies with the release of 98.39±5.10% drug in 1 hour. The optimized formulation size was found to be 156.7 nm as mean droplet size and Z-Average of 808.6 nm with -18.3 mV as zeta potential. Conclusion: The study demonstrated that SNEDDS was a promising strategy to enhance the dissolution rate of EFV by improving solubility.


Author(s):  
Kiran C. Mahajan ◽  
Smita S. Pimple ◽  
Hemant A. Deokule

The present study aims to develop and optimize a self-emulsifying drug delivery system for paediatric patients to improve the oral bioavailability of the anthelmintic drug, Praziquantel (PZQ) and to perform it’s in-vitro dissolution study. The solubility of PZQ was estimated in various vehicles to select proper component combination. Capmul MCM (oil), Cremophore RH40 (surfactant) and PEG400 (co-surfactant) were employed to construct pseudo-ternary phase diagrams. Eight formulations composed of Capmul MCM, at Smix ratios (1:1, 2:1 & 3:1) were selected. The optimized formulation F7 has a mean globule size 14.73 nm with a negative zeta potential -44.43 mV. The results indicated that PZQ loaded SEDDS, showed enhanced solubilization and nanosizing potential to improve the absorption of the drug.


2013 ◽  
Vol 63 (2) ◽  
pp. 241-251 ◽  
Author(s):  
Ramesh Jakki ◽  
Muzammil Afzal Syed ◽  
Prabhakar Kandadi ◽  
Kishan Veerabrahma

The main objective of this work was to prepare a self-micro emulsifying drug delivery system (SMEDDS) for enhancement of oral bioavailability of domperidone, a poorly water soluble drug. The solubility of the drug was determined in various vehicles. A pseudo ternary phase diagram was constructed to identify the self-micro emulsification region. The in vitro self-micro emulsification properties and droplet size analysis of SMEDDS were studied following their addition to water under mild agitation. Further, the resultant formulations were investigated for clarity, phase separation, globule size, effect of pH and dilutions (1:100, 1:500, 1:1000) and freeze-thaw stability. The optimized formulation, SMEDDS-B used for in vitro dissolution and bioavailability assessment, contained oil (Labrafac CC, 25 %, m/m), surfactant (Tween 80, 55 %, m/m), and co-surfactant (Transcutol®, 20 %, m/m). The preliminary oral bioavailability of domperidone from SMEDDS was 1.92-fold higher compared to that of domperidone suspension in rats. The AUC0-24 and cmax values were 3.38 ± 0.81 μg h mL-1 and 0.44 ± 0.03 μg mL-1 for SMEDDS-B formulation in comparison with 1.74 ± 0.18 μg h mL-1 and 0.24 ± 0.02 μg mL-1 for domperidone suspension, suggesting a significant increase (p < 0.05) in oral bioavailability of domperidone from SMEDDSS.


2012 ◽  
Vol 62 (4) ◽  
pp. 563-580 ◽  

The aim of the study was to develop and evaluate a self- -emulsifying drug delivery system (SEDDS) formulation to improve solubility and dissolution and to enhance systemic exposure of a BCS class II anthelmetic drug, albendazole (ABZ). In the present study, solubility of ABZ was determined in various oils, surfactants and co-surfactants to identify the microemulsion components. Pseudoternary phase diagrams were plotted to identify the microemulsification existence area. SEDDS formulation of ABZ was prepared using oil (Labrafac Lipopfile WL1349) and a surfactant/ co-surfactant (Tween 80/PEG 400) mixture and was characterized by appropriate studies, viz., microemulsifying properties, droplet size measurement, in vitro dissolution, etc. Finally, PK of the ABZ SEDDS formulation was performed on rats in parallel with suspension formulation. It was concluded that the SEDDS formulation approach can be used to improve the dissolution and systemic exposure of poorly water-soluble drugs such as ABZ.


Sign in / Sign up

Export Citation Format

Share Document