scholarly journals FORMULATION AND IN VIVO EVALUATION OF SELF-NANOEMULSIFYING DRUG DELIVERY SYSTEM OF RAMIPRIL IN WISTAR RATS

Author(s):  
NALLAPU JAYAPAL ◽  
YAMSANI VAMSHI VISHNU

Objective: The aim was to formulate and evaluate self-nanoemulsifying drug delivery systems (SNEDDS) of ramipril, an antihypertensive drug to improve the solubility and bioavailability. Methods: Based on solubility studies oil phase (Sefsol 218), surfactant (Acrysol EL135), and cosurfactant (Transcutol P), respectively, were selected to prepare SNEDDS. Ramipril SNEDDS optimized employing box-Behnken design through the study of factors. All formulations were evaluated for particle size, zeta potential (ZP), polydispersity index (PDI), entrapment efficiency (EE), drug content, and in vitro drug release. The optimized formulation was characterized for Fourier transform infrared (FTIR), scanning electron microscopy (SEM), stability studies, and pharmacokinetic study. Results: The mean particle size, PDI, ZP, EE, content uniformity, and in vitro drug release profile of optimized ramipril-loaded SNEDDS (RF14) were found to be 75.3±2.21nm, 0.126±0.05, −24.4±5.78mV, 98.74±1.97%, 99.52±1.67%, and 98.65±1.73%, respectively. FTIR studies revealed that there is no incompatibility between drug and excipients, SEM images exhibited nanoparticles to be more porous and in spherical shape. Stability studies indicated formulation was stable for 6 months. In vivo studies were conducted for optimized formulation RF14, the Tmax was found to be 0.5±0.62 and 0.5±0.95 h for the optimized and commercial formulations respectively, while Cmax was 25.16±1.73 ng/mL was significant (p<0.05) as compared to the ramipril pure drug 8.02±0.086 ng/mL. AUC0-t of the SNEDDS formulation was higher 355.49±1.76ng h/ml compared to pure drug 116.57±1.64 ng h/ml indicated higher amount of drug concentration in blood proving better systemic absorption of ramipril from SNEDDS formulation as compared to the pure drug. Conclusion: It is concluded from the results that ramipril was successfully formulated into SNEDDS with higher concentration with fast action.

Author(s):  
S Srikanth Reddy ◽  
G Suresh

The current research is aimed at developing liquid self-nanoemulsifying drug delivery system (liquid-SNEDDS) of Manidipine for enhanced solubility and oral bioavailability. The Manidipine SNEDDS are formulated with excipients comprising of Capmul MCM (oil phase), Transcutol P (surfactant) Lutrol L 300 as co-surfactant. The prepared fifteen formulations of Manidipine SNEDDS analysed for emulsification time, percentage transmittance, particle size, in vitro drug release, and stability studies. In vivo pharmacokinetic studies of the optimized formulation were carried out in Wistar rats in comparison with control (pure drug). The morphology of Manidipine SNEDDS indicates spherical shape with uniform particle distribution. The percentage drug release from optimized formulation F14 is 98.24 ± 5.14%. The particle size F14 formulation was 22.4 nm and Z-Average 23.3 nm. The PDI and zeta potential of Manidipine SNEDDS optimized formulation (F14) were 0.313 and-5.1mV respectively. From in vivo bioavailability data the optimized formulation exhibited a significantly greater Cmax and Tmax of the SNEDDS was found to be 3.42 ± 0.46ng/ml and 2.00 ± 0.05 h respectively. AUC0-∞ infinity for formulation was significantly higher (11.25 ± 3.45 ng.h/ml) than pure drug (7.45 ± 2.24ng. h/ml). Hence a potential SNEDDS formulation of Manidipine developed with enhanced solubility and bioavailability.


Author(s):  
Pravin S Patil ◽  
Shashikant C Dhawale

 Objective: The purpose of the present investigation was to develop a nanosuspension to improve dissolution rate and oral bioavailability of ritonavir.Methods: Extended-release ritonavir loaded nanoparticles were prepared using the polymeric system by nanoprecipitation technique. Further, the effect of Eudragit RL100 (polymeric matrix) and polyvinyl alcohol (surfactant) was investigated on particle size and distribution, drug content, entrapment efficiency, and in vitro drug release from nanosuspension where a strong influence of polymeric contents was observed. Drug-excipient compatibility and amorphous nature of drug in prepared nanoparticles were confirmed by Fourier transform infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction studies, respectively.Results: Hydrophobic portions of Eudragit RL100 could result in enhanced encapsulation efficiency. However, increase in polymer and surfactant contents lead to enlarged particle size proportionately as confirmed by transmission electron microscopy. Nanosuspension showed a significant rise in dissolution rate with complete in vitro drug release as well as higher bioavailability in rats compared to the pure drug.Conclusion: The nanoprecipitation technique used in present research could be further explored for the development of different antiretroviral drug carrier therapeutics.


2012 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
Santanu Chakraborty ◽  
Priyanka Nayak ◽  
Bala Murali Krishna ◽  
Madhusmruti Khandai ◽  
Ashoke Kumar Ghosh

The aim of the present research work was to fabricate aceclofenac loaded pectinate microspheres by ionic gelation method and evaluate the effect of different cross-linking agents and polymer concentration on particle size, encapsulation efficacy and drug release behavior. It was also investigated that whether this pectinate dosage form was able to target the drug release in intestinal region and prevent the different side effect associated with the drug in stomach or not. It was observed that particle size, encapsulation efficacy and in vitro drug release were largely depended on polymer concentration and cross-linking agents. It was also observed that pectinate microspheres showed excellent pH depended mucoadhesive properties and they were able to restrict the drug release in stomach. <em>In vitro</em> drug release study showed that alminium-pectinate microspheres have more sustaining property as compared to barium-pectinate microspheres. Holm-Sidak multiple comparison analysis suggested a significant difference in measured t<sub>50%</sub> values among all the formulations with same cross-linking agent. In vivo studies revealed that the anti inflammatory and analgesic effects induced by pectinate microspheres were significantly high and prolonged as compared to pure drug. So, pectinate microspheres can be an excellent carrier for targeting the delivery of aceclofenac as well as help in improving the patient compliance by prolonging the systemic absorption.


2021 ◽  
Vol 11 (2-S) ◽  
pp. 76-81
Author(s):  
Jddtadmin Journal

Thepurpose of the study was to develop and evaluatemucoadhesive microspheres of Budesonide for pulmonary drug delivery systemhaving prolonged residence time and sustained drug release. Microspheres were prepared by emulsificationsolvent evaporation technique using HPMC, carbopol as polymers in varying ratios. The microspheres were evaluated for its percentage yield, drug entrapment efficiency, particle size and shape, in vitro mucoadhesion study and in vitro drug release studies.The FTIR studies revealed no chemical interaction between the drug molecule and polymers and found that drug was compatible with used polymer. The mucoadhesive microspheres showed particle size, drug entrapment efficiency and yield in the ranges of148 - 164 μm, 68.0 - 85.0%and67.52 - 87.25% respectively. In vitro drug release and mucoadhesion study confirms thatformulationF5 was the best formulation as it releases 81.8 % at the end of 12 hr. in controlled manner and percentage mucoadhesion of 75.2 % after 10 hr. This confirms the developed budesonidemucoadhesive microspheres are promising for pulmonary drug delivery system.   Keywords: Budesonide, Mucoadhesion, Microspheres, Drug entrapment efficiency.


2020 ◽  
Vol 17 ◽  
Author(s):  
Bhaskar Kurangi ◽  
Sunil Jalalpure ◽  
Satveer Jagwani

Aim: The aim of the study was to formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC) through topical application. Background: Resveratrol (RV) is a nutraceutical compound that has exciting pharmacological potential in different diseases including cancers. Many studies of resveratrol have been reported for anti-melanoma activity. Due to its low bioavailability, the activities of resveratrol are strongly limited. Hence, an approach with nanotechnology has been done to increase its activity through transdermal drug delivery. Objective: To formulate, characterize, and evaluate the resveratrol-loaded cubosomes (RC). To evaluate resveratrol-loaded cubosomal gel (RC-Gel) for its topical application. Methods: RC was formulated by homogenization technique and optimized using a 2-factor 3-level factorial design. Formulated RCs were characterized for particle size, zeta potential, and entrapment efficiency. Optimized RC was evaluated for in vitro release and stability study. Optimized RC was further formulated into cubosomal gel (RC-Gel) using carbopol and evaluated for drug permeation and deposition. Furthermore, developed RC-Gel was evaluated for its topical application using skin irritancy, toxicity, and in vivo local bioavailability studies. Results: The optimized RC indicated cubic-shaped structure with mean particle size, entrapment efficiency, and zeta potential were 113±2.36 nm, 85.07 ± 0.91%, and -27.40 ± 1.40 mV respectively. In vitro drug release of optimized RC demonstrated biphasic drug release with the diffusion-controlled release of resveratrol (RV) (87.20 ± 2.25%). The RC-Gel demonstrated better drug permeation and deposition in mice skin layers. The composition of RC-Gel has been proved non-irritant to the mice skin. In vivo local bioavailability study depicted the good potential of RC-Gel for skin localization. Conclusion: The RC nanoformulation proposes a promising drug delivery system for melanoma treatment simply through topical application.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 557
Author(s):  
Alka Prasher ◽  
Roopali Shrivastava ◽  
Denali Dahl ◽  
Preetika Sharma-Huynh ◽  
Panita Maturavongsadit ◽  
...  

Eosinophilic esophagitis (EoE) is a chronic atopic disease that has become increasingly prevalent over the past 20 years. A first-line pharmacologic option is topical/swallowed corticosteroids, but these are adapted from asthma preparations such as fluticasone from an inhaler and yield suboptimal response rates. There are no FDA-approved medications for the treatment of EoE, and esophageal-specific drug formulations are lacking. We report the development of two novel esophageal-specific drug delivery platforms. The first is a fluticasone-eluting string that could be swallowed similar to the string test “entero-test” and used for overnight treatment, allowing for a rapid release along the entire length of esophagus. In vitro drug release studies showed a target release of 1 mg/day of fluticasone. In vivo pharmacokinetic studies were carried out after deploying the string in a porcine model, and our results showed a high local level of fluticasone in esophageal tissue persisting over 1 and 3 days, and a minimal systemic absorption in plasma. The second device is a fluticasone-eluting 3D printed ring for local and sustained release of fluticasone in the esophagus. We designed and fabricated biocompatible fluticasone-loaded rings using a top-down, Digital Light Processing (DLP) Gizmo 3D printer. We explored various strategies of drug loading into 3D printed rings, involving incorporation of drug during the print process (pre-loading) or after printing (post-loading). In vitro drug release studies of fluticasone-loaded rings (pre and post-loaded) showed that fluticasone elutes at a constant rate over a period of one month. Ex vivo pharmacokinetic studies in the porcine model also showed high tissue levels of fluticasone and both rings and strings were successfully deployed into the porcine esophagus in vivo. Given these preliminary proof-of-concept data, these devices now merit study in animal models of disease and ultimately subsequent translation to testing in humans.


Author(s):  
Anukumar E ◽  
Nagaraja T S ◽  
Yogananda R ◽  
Bharathi D R

The present work is to prepare and characterization of self nano emulsifying drug delivery system containing Anti-hypertensive drug. Losartan is a competitive antagonist and inverse agonist of angiotensin 2 receptor. The SNEDDS is prepared by Sonication method using a components of SPAN 60/Eudragit RS 100 as a surfactant, PVA as a Co-surfactant, Iso propyl alcohol as a solvent and DCM as a co-solvent. The prepared SNEDDS was evaluated for Fourier transform infrared spectroscopy, Surface morphology, particle size, zeta potential,  drug entrapment efficiency, visual assessment, self-emulsification time, Robustness to dilution, in-vitro drug release and short term stability studies. The in-vitro drug release data of all the formulations were found to be zero order over a period of 24 h and Formulation F7 shows good results for the drug release kinetics as controlled release. The stability studies data was found that there was no such difference in drug EE and in-vitro drug release.


2021 ◽  
pp. 194589242110391
Author(s):  
Changcheng You ◽  
Ling-Fang Tseng ◽  
Alexander Pappas ◽  
Danny Concagh ◽  
Yina Kuang

Background Intranasal corticosteroid sprays (INCSs) used to treat chronic rhinosinusitis are suboptimal due to limited penetration into the middle meatus, rapid clearance, and poor patient compliance. A bioresorbable drug matrix, developed with the XTreoTM drug delivery platform, may overcome the limitations of INCS by providing continuous dosing over several months. Objective To evaluate the in vitro drug release and in vivo pharmacokinetics of novel mometasone furoate (MF) matrices in a rabbit dorsal maxillary osteotomy model. Methods XTreoTM matrices were formulated to consistently elute MF for up to 6 months. Matrices were surgically placed bilaterally into the maxillary sinuses of New Zealand White (NZW) rabbits. Tissue and plasma MF concentrations were measured to assess the in vivo drug delivery. The in vivo and in vitro drug release kinetics of the matrices were quantified and compared to those of rabbits receiving daily Nasonex® MF nasal sprays. Results XTreoTM matrices self-expanded upon deployment to conform to the irregular geometry of the maxillary sinus cavities in the NZW rabbits. Sustained release of MF was demonstrated in vitro and in vivo for 2 MF matrices of distinct release durations and an in vitro–in vivo correlation was established. Therapeutic levels of MF in local tissues were measured throughout the intended dosing durations. In contrast to the variable peaks and troughs of daily nasal sprays, sustained dosing via a single administration of MF matrices was confirmed by quantifiable plasma MF concentrations over the intended dosing duration. Conclusion The XTreoTM MF matrices provided targeted and efficient dosing to local sinus tissues that was superior to INCS. Sustained drug release was confirmed both in vitro and in vivo. The novel XTreoTM technology may provide precisely tuned, long-lasting drug delivery to sinus tissues with a single treatment.


Sign in / Sign up

Export Citation Format

Share Document