scholarly journals FORMULATION AND CHARACTERIZATION OF LAFUTIDINE NANOSUSPENSION FOR ORAL DRUG DELIVERY SYSTEM

2018 ◽  
Vol 10 (2) ◽  
pp. 20 ◽  
Author(s):  
Noor Mohammed Dawood ◽  
Shaimaa Nazar Abdal-hammid ◽  
Ahmed Abbas Hussien

Objective: The objective of this study was to prepare nanosuspension of a practical water insoluble antiulcer drug which is lafutidine to enhance the solubility, dissolution rate with studying the effect of different formulation variables to obtain the best formula with appropriate physical properties and higher dissolution rate.Methods: Nanosuspension of lafutidine was prepared using solvent anti-solvent precipitation method using Polyvinylpyrrolidone K-90(PVP K-90) as the stabilizer. Ten formulations were prepared to show the effect of different variables in which two formulations showed the effect of stabilizer type, three formulations showed the effect of stabilizer concentration, two formulations showed the effect of combination of polymer with surfactant such as tween 80, three formulations show the effect of stirring speed and three formulations prepare to show the effect of addition of co-surfactant such as tween 20. All these formulations are evaluated for their particle size and entrapment efficiency and in vitro release. The selected one was evaluated for zeta potential, scanning electron microscope, atomic force microscopy, Fourier transforms infrared spectroscopy, differential scanning calorimetry, saturation solubility and stability study.Results: The formulations (F3-F10) were in the nano size. The optimum concentration of the stabilizer was in the formulation when the drug: polymer: surfactant ratio 1:4:4 and the optimum stirring speed was 1500 rpm. Dramatic effect on the particle size reduction was found by the addition of co-surfactant (tween 20) in formulation F7 that has a particle size 15.89±1.8 nm. The selected formula F7 showed an enhanced dissolution profile (10 min) compared to the pure drug at all-time intervals.Conclusion: The results show that the formulation that contains drug: PVP-K90: tween 80: tween 20 in ratio 1:4:2:2 is the best one and can be utilized to formulate lafutidine nanosuspension. 

Author(s):  
Nizar Awish Jassem ◽  
Nawal Ayash Rajab

Objective: The objective of this study was to formulate and evaluate of the poorly soluble drug, azilsartan medoxomil into nanosuspension to increase the solubility and enhance the dissolution rate and then improve its bioavailability.Methods: Nanosuspension of azilsartan medoxomil was prepared using solvent-antisolvent precipitation method using PVP-K30 as a stabilizer. Eight formulations were prepared to show the effect of different parameters in which four formulations show the effect of stabilizer concentration, three formulations show the effect of stirring speed and two formulations prepare to show the effect of the addition of co-stabilizer such as sodium lauryl sulphate (SLS) and tween 80. All these formulation are evaluated for their particle size and entrapment efficiency. The selected one was evaluated for zeta potential, scanning electron microscope (SEM), saturation solubility, and in vitro drug release.Results: All the prepared formulations were in the nano size. The optimum concentration of the stabilizer was in the formulation when the drug: stabilizer ratio 1:1 and optimum stirring speed was 300 rpm. Dramatic effect on the particle size reduction was found by the addition of co-stabilizer (SLS) in formulation F3 that has P. S 157±0.0 nm. The selected formula F3 showed an enhanced dissolution profile compared to the pure drug at all-time intervals.Conclusion: The results show that the formulation that contain drug: PVP-K30: SLS in ratio 1:0.75:0.25 is the best one and can be utilized to formulate azilsartan medoxomil nanosuspension.


Author(s):  
SARAH LABIB ◽  
MOHAMED NASR ◽  
MOHAMED NASR

Objective: The main objective of this study was to develop atorvastatin calcium (ATR) as an oral drug delivery system for a P-glycoprotein (P-gp) substrate drug using different pharmaceutical excipients that inhibit P-glycoprotein and evaluate the influence of nanocrystals on the dissolution characteristics and bioavailability compared to the plain drug. Methods: A nanosuspension was prepared by Solvent-antisolvent precipitation method using a solvent containing stabilizer that act as a p-gp inhibitor dissolved in distilled water as polyethylene glycol 300, polyethylene glycol 400 (PEG 300, PEG 400), tween 20 and tween 80 while the solvent selected for atorvastatin calcium was methanol. The concentrations were as follows: PEG 300 and 400 = 0.25% w/v, tween 20 and 80 = 0.75% v/v. Nanocrystals were extracted from the suspension and characterized. Results: Particle size of the drug was 1307±127.79 nm while the formulas prepared ranged from 223±17.67 to 887±58.12 nm. Pure ATR had a saturated solubility of 0.059±0.005 mg/ml and the prepared nanocrystals ranged from 0.32±0.021 to 0.88±0.019 mg/ml. The Percentage of drug released of plain atorvastatin calcium reached 41.49% while the formula ranged from 44.32 to 61.5%. Both XRD and SEM discussed the degree of crystallinity as follows: F1<F2<F4<F3<ATR. Conclusion: 0.3% of PEG 300 and PEG 400 were not enough to formulate proper nanocrystals while 0.75% tween 20 and tween 80 achieved acceptable formulas. F4 which is prepared with tween 80 exhibited the highest enhancement in saturated solubility, dissolution rate and subsequently expected to have improved oral bioavailability.


Author(s):  
SHIVAM SHARMA ◽  
VIVEK

Objective: The purpose of this study was to develop and in vitro evaluation phytosome of terbinafine HCL to enhance the bioavailability for oral route. Methods: The novel phytosome of terbinafine hydrochloride (TFH) was formulated with the molar ratio (1:2) of drug and phospholipid by using solvent evaporation technique. The resulting TFH-PC was determined by means of particle size analyzer (PSA), percentage yield, microscopy, drug content, transmission electron microscopy (TEM). Substantial contact of terbinafine HCL with phospholipids was completed through Fourier transforms infrared spectroscopy (FTIR). Results: The all relevant results of TFH-PC were showed that the percentage entrapment efficiency of formulation was found in 76% to 90%. In vitro release data were exhibited approximately 65% to 79% of the drug released from the TFH-PC formulation by using dialysis membrane technique. Therefore, Formulation (F3) was accomplished that phytosome contain the superior physical characters and compatibility with drug and phospholipids than to make it easy to overcome the competence of drug to pass the lipid-rich bio-membrane. Conclusion: In present work, terbinafine loaded phytosome was formulated for increasing the oral bioavailability of selected drug. Hence, TER-HCL phytosome were effectively improved the absorption of drug in form of phospholipids complex.


Author(s):  
Sejal Patel ◽  
Anita P Patel

In the interest of administration of dosage form oral route is most desirable and preferred method. Poor solubility and slow dissolution rate major challenges in upcoming and existing therapeutically active compound. Water insoluble drug indicate insufficient bioavailability as well dissolution resulting in fluctuating plasma level. Benidipine (BND) is Biopharmaceutical Classification System Class-II drug having low solubility and high permeability, antihypertensive drug has lower bioavailability. The purpose of the present study was to improve solubility as well dissolution profile of Benidipine HCL. BND nanosuspension was formulated using precipitation technique. Various polymers were evaluated  viz. HPMC E15, Tween 20, PVP K30 in preliminary trial to stabilized nanosuspension but PVP K30 was selected among them. The solubility of BND was carried out using different solvents like Ethanol, Acetonitrile; Acetone. Ethanol was used as a preferred solvent as BND shows high solubility in it.  The effect of different important process parameters e.g. selection of polymer concentration X1(10 mg), solvent concentration X2 (0.2 ml) were investigated by Central Composite factorial design to accomplish desired particle size and rate of dissolution. Stirring speed and time of stirring was kept constant as 1000 rpm and 2h respectively. To achieve optimized batch, 9 formulations (F1-F9) were prepared.  The optimized batch had 237 nm particle size Y1, and showed in-vitro dissolution Y2 98±0.72 % in 30 mins related to pure BND (58±0.25%) and zeta potential was -15.3. None of interaction between drug and polymer was confirmed by Differential scanning calorimetry (DSC) and FT-IR analysis. The obtained results showed that issues related particle size (nm) and rate of dissolution of BND has been solved when nanosuspension can be prepared by precipitation method by considering optimized parameter due to formation of nanosized particles


Author(s):  
Leena Jacob ◽  
Abhilash Tv ◽  
Shajan Abraham

Objective: The study was carried out with an objective to achieve a potential sustained release oral drug delivery system of an antihypertensive drug, Perindopril which is a ACE inhibitor having half life of 2 hours. Perindopril is water soluble drug, so we can control or delay the release rate of drug by using release retarding polymers. This may also decrease the toxic side effects by preventing the high initial concentration in the blood.Method: Microcapsules were prepared by solvent evaporation technique using Eudragit L100 and Ethyl cellulose as a retarding agent to control the release rate and magnesium stearate as an inert dispersing carrier to decrease the interfacial tension between lipophilic and hydrophilic phase. Results: Prepared microcapsules were evaluated for the particle size, percentage yield, drug entrapment efficiency, flow property and in vitro drug release for 12 h. Results indicated that the percentage yield, mean particle size, drug entrapment efficiency and the micrometric properties of the microcapsules was influenced by various drug: polymer ratio. The release rate of microcapsules could be controlled as desired by adjusting the combination ratio of dispersing agents to retarding agents.Conclusion:Perindopril microcapsules can be successfully designed to develop sustained drug delivery, that reduces the dosing frequency and their by one can increase the patient compliance.


Author(s):  
Omar Saeb Salih ◽  
Roaa Abdalhameed Nief

ABSTRACTObjective: The objective of this study is to develop a controlled release matrix tablet of candesartan cilexetil to reduce the frequency of administration,enhance bioavailability and improve patient compliance; a once daily sustained release formulation of candesartan cilexetil is desirable.Methods: The prepared tablets from F1 to F24 were evaluated with different evaluation parameters like weight variation, drug content, friability,hardness, thickness and swelling ability. In vitro release for all formulas were studied depends on the type and amount of each polymer, i.e. (16 mg,32 mg and 48 mg) respectively beside to the combination effect of polymers on the release of the drug from the tablet.Results: In vitro release showed that formula 13 had the faster release (100% after 4 h) which contained acacia (1:1) and the lowest sustain releasewas showed for F7 (73% after 8 h) which contained HPMC K100M (1:1). Formula 1 was an 89 % release after 8 h which contain eudragit RS100; F4was a 100 % release after 5 h which contain Na CMC, F10 was a 100% after 8 h which contain xanthan gum and F16 was a 100 % release after 5 hwhich contain tragacanth polymer. Formula 9 had a lower release than F7 and F8 respectively. Formula 7 can be used for sustain oral drug delivery ofcandesartan cilexetil while Formula 13 can be used in contrary as fast release tablets for faster response.Conclusion: Controlled drug delivery system is promising for less dosing and higher patient compliance.Keywords: Angiotensin II receptor antagonist, Hypertension, Matrix system, Control release.


Author(s):  
Mohammed Sabar Al-lami ◽  
Malath H. Oudah ◽  
Firas A. Rahi

This study was carried out to prepare and characterize domperidone nanoparticles to enhance solubility and the release rate. Domperidone is practically insoluble in water and has low and an erratic bioavailability range from 13%-17%. The domperidone nanoparticles were prepared by solvent/antisolvent precipitation method at different polymer:drug ratios of 1:1 and 2:1 using different polymers and grades of poly vinyl pyrolidone, hydroxy propyl methyl cellulose and sodium carboxymethyl cellulose as stabilizers. The effect of polymer type, ratio of polymer:drug, solvent:antisolvent ratio, stirring rate and stirring time on the particle size, were investigated and found to have a significant (p? 0.05) effect on particle size. The best formula was obtained with lowest average particle size of 84.05. This formula was studied for compatibility by FTIR and DSC, surface morphology by FESEM and crystalline state by XRPD. Then domperidone nanoparticles were formulated into a simple capsule dosage form in order to study of the in vitro release of drug from nanoparticles in comparison raw drug and mixture of polymer:drug ratios of 2:1. The release of domperidone from best formula was highly improved with a significant (p? 0.05) increase.


Author(s):  
Ahmed H. Ali ◽  
Shaimaa N. Abd-Alhammid

       Atorvastatin have problem of very slightly aqueous solubility (0.1-1 mg/ml). Nano-suspension is used to enhance it’s of solubility and dissolution profile. The aim of this study is to formulate Atorvastatin as a nano-suspension to enhance its solubility due to increased surface area of exposed for dissolution medium, according to Noyes-Whitney equation.         Thirty one formulae were prepared to evaluate the effect of ; Type of polymer, polymer: drug ratio, speed of homogenization, temperature of preparation and inclusion of co-stabilizer in addition to the primary one; using solvent-anti-solvent precipitation method under high power of ultra-sonication. In this study five types of stabilizers (TPGS, PVP K30, HPMC E5, HPMC E15, and Tween80) were used in three different concentrations 1:1, 1:0.75 and 1:0.5 for preparing of formulations. At the same time, tween80 and sodium lauryl sulphate have been added as a co-stabilizer.          Atorvastatin nano-suspensions were evaluated for particle size, PDI, zeta potential, crystal form and surface morphology. Finally, results of particle size analysis revealed reduced nano-particulate size to 81nm for optimized formula F18 with the enhancement of in-vitro dissolution profile up to 90% compared to 44% percentage cumulative release for the reference Atorvastatin calcium powder in 6.8 phosphate buffer media. Furthermore, saturation solubility of freeze dried Nano suspension showed 3.3, 3.8, and 3.7 folds increments in distilled water, 0.1N Hcl and 6.8 phosphate buffers, respectively. Later, freeze dried powder formulated as hard gelatin capsules and evaluated according to the USP specifications of the drug content and the disintegration time.        As a conclusion; formulation of poorly water soluble Atorvastatin calcium as nano suspension significantly improved the dissolution of the drug and enhances its solubility.


2007 ◽  
Vol 342-343 ◽  
pp. 445-448 ◽  
Author(s):  
Ji Shan Quan ◽  
Hu Lin Jiang ◽  
Yun Jaie Choi ◽  
Mi Kyong Yoo ◽  
Chong Su Cho

The aim of this study is to prepare mucoadhesive chitosan microspheres for protein drug to deliver to intestine through oral administration. The thiolated Eudragit was synthesized by reaction between L-cysteine hydrochloride and Eudragit® L-100. About 8 mol-% of cysteine was introduced to the Eudragit-cysteine conjugate. The conjugate was used to coat bovine serum albumin (BSA)-loaded chitosan microspheres. The average particle sizes of BSA-loaded thiolated Eudragit-coated chitsoan microspheres (TECMs) were 4.06±0.74 .m and the uniform sizedistribution was shown. The in vitro release of BSA from BSA-loaded TECMs was pH-dependent. Our results indicated that thiolated Eudragit might be a good candidate as a coating material for oral delivery of protein drug owing to mucoadhesive and pH-sensitive properties.


Sign in / Sign up

Export Citation Format

Share Document