scholarly journals ENHANCEMENT OF THE SOLUBILITY OF FAMOTIDINE SOLID DISPERSION USING NATURAL POLYMER BY SOLVENT EVAPORATION

Author(s):  
HUSSEIN K. ALKUFI ◽  
ASMAA M. RASHID

Objective: The aims of the study to enhance solubility and dissolution of famotidine using natural polymer. Solubility study of a drug is one of the contributing factors of its oral bioavailability. The formulation of poorly soluble drugs for oral delivery presents a challenge to the formulation technologists. Methods: The present study has shown that it is possible to raise the solubility for poorly soluble drugs like famotidine, by preparing solid dispersion using natural water-soluble polymer (xyloglucan and hyaluronic acid) as solubilizer through solvent evaporation method. Physical mixture and solid dispersion of famotidine with xyloglucan (XG) or hyaluronic acid in a ratio of 1:1, 1:2, 1:3 were prepared. Solubility study, drug content, dissolution profile and compatibility study were performed for famotidine in solid dispersions XS1, XS2, XS3, HS4, HS5, HS6 as well as in physical mixtures at a ratio 1:1 for both polymer (XG and hyaluronic acid). Results: It was observed that solid dispersions of each drugs showed an increase in dissolution rate in comparison with its pure drug in the ratio of 1:1 (Drug: carrier). It can be concluded that with the care and proper use of xyloglucan, the solubility of drugs poorly soluble can be improved. The prepared solid dispersion showed improvement of drug solubility in all prepared formulas. The best result was obtained with formula XS1 (famotidine: xyloglucan at ratio 1:1) that showed 26 fold increase in solubility compared to the solubility of pure drug. Conclusion: The natural solid dispersion, increased wettability and reduced crystallinity of the drug which leads to improving solubility and dissolution.

Author(s):  
Md Armin Minhaz ◽  
Md Mofizur Rahman ◽  
Md Qamnul Ahsan ◽  
Abul Bashar Ripon Khalipha ◽  
Mohammed Raihan Chowdhury

In order to investigate the effect of polymers on release mechanism of poorly soluble drugs from solid dispersions, Clonazepam was used as a model drug for these purposes. Five types of solid dispersions were prepared using polyethylene glycol 6000 (PEG- 6000), Kollicoat IR, Kollidon VA 64 and Poloxomer in different drug-tocarrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solvent evaporation method was used for preparation of solid dispersions. The in-vitro dissolution study with temperature of 37° C and a paddle method, 100 rpm was used in 1000 ml of distilled water as dissolution medium in each dissolution basket for the pure drug and solid dispersions. For pure Clonazepam showed very slow dissolution rate and the solid dispersion considerably enhanced the dissolution rate. Decreased crystalline and increased amorphous fraction of the drug was probably done by wettability and dispersibility. The highest improvement in wettability and dissolution rate of Clonazepam was observed in PEG-6000, Poloxomer and Kollidon VA 64 (1:10 ratio). Solid dispersions containing polymer (1:10 ratio) prepared by solvent method showed significant improvement in the release profile as compared to pure drug, Clonazepam. DOI: http://dx.doi.org/10.3329/ijpls.v1i2.12952 International Journal of Pharmaceutical and Life Sciences Vol.1(2) 2012


2020 ◽  
Vol 10 (1) ◽  
pp. 173-177 ◽  
Author(s):  
, Ikram ◽  
Kapil Kumar

Solid dispersion is a technique which is widely and successfully applied to improve the solubility, dissolution rates and consequently the bioavailability of poorly soluble drugs. Dispersion of one or more active ingredients (hydrophobic) is done with an inert carrier (hydrophilic) at solid-state prepared by fusion method, solvent, and melting solvent method. In this review article, we have focused on the methods of preparation, advantages, disadvantages and characterization of the solid dispersions. Keywords: Solid dispersion; dissolution; solubility.


INDIAN DRUGS ◽  
2013 ◽  
Vol 50 (06) ◽  
pp. 13-19
Author(s):  
R. O Sonawane ◽  
◽  
S. Nayak ◽  
M. D. Chaudhari ◽  
V. V. Pande

The poorly water soluble drugs tend to have low bioavailability and this can be improved by several methods. Solid dispersion is a promising formulation approach to improve solubility and dissolution and ultimately oral bioavailability of these drugs. The aim of this study was to prepare and characterize solid dispersion of anti-diabetic glimepiride, a BCS class II drug, with the hydrophilic carrier PVP K30 by solvent evaporation and microwave induced fusion methods. Scanning electron microscopy (SEM), X–ray powder diffractometry (XRD) and differential scanning calorimetric (DSC) were used to evaluate the physical state of the drug. The solid dispersions were also evaluated for drug content, solubility and dissolution studies. Solid dispersions prepared by solvent evaporation method were showed maximum enhancement of solubility and dissolution in comparison to that prepared by other method.


2012 ◽  
Vol 1 (12) ◽  
pp. 423-430 ◽  
Author(s):  
Md. Sariful Islam Howlader ◽  
Jayanta Kishor Chakrabarty ◽  
Khandokar Sadique Faisal ◽  
Uttom Kumar ◽  
Md. Raihan Sarkar ◽  
...  

The aim of the present study was to improve the solubility and dissolution rate of a poorly water-soluble drug by a solid dispersion technique, in order to investigate the effect of these polymers on release mechanism from solid dispersions. Diazepam was used as a model drug to evaluate its release characteristics from different matrices. Solid dispersions were prepared by using polyethylene glycol 6000 (PEG-6000), HPMC, HPC and Poloxamer in different drug-to-carrier ratios (1:2, 1:4, 1:6, 1:8, 1:10). The solid dispersions were prepared by solvent method. The pure drug and solid dispersions were characterized by in vitro dissolution study. Distilled water was used as dissolution media, 1000 ml of distilled water was used as dissolution medium in each dissolution basket at a temperature of 37°C and a paddle speed of 100 rpm. The very slow dissolution rate was observed for pure Diazepam and the dispersion of the drug in the polymers considerably enhanced the dissolution rate. This can be attributed to improved wettability and dispersibility, as well as decrease of the crystalline and increase of the amorphous fraction of the drug. SEM (Scanning Electron microscope) studies shows that the solid dispersion having a uniform dispersion. Solid dispersions prepared with PEG-6000, Poloxamer showed the highest improvement in wettability and dissolution rate of Diazepam. Solid dispersion containing polymer prepared with solvent method showed significant improvement in the release profile as compared to pure drug, Diazepam.DOI: http://dx.doi.org/10.3329/icpj.v1i12.12453 International Current Pharmaceutical Journal 2012, 1(12): 423-430


2016 ◽  
Vol 52 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Ehsan Adeli

ABSTRACT Azithromycin is a water-insoluble drug, with a very low bioavailability. In order to increase the solubility and dissolution rate, and consequently increase the bioavailability of poorly-soluble drugs (such as azithromycin), various techniques can be applied. One of such techniques is "solid dispersion". This technique is frequently used to improve the dissolution rate of poorly water-soluble compounds. Owing to its low solubility and dissolution rate, azithromycin does not have a suitable bioavailability. Therefore, the main purpose of this investigation was to increase the solubility and dissolution rate of azithromycin by preparing its solid dispersion, using different Polyethylene glycols (PEG). Preparations of solid dispersions and physical mixtures of azithromycin were made using PEG 4000, 6000, 8000, 12000 and 20000 in various ratios, based on the solvent evaporation method. From the studied drug release profile, it was discovered that the dissolution rate of the physical mixture, as the well as the solid dispersions, were higher than those of the drug alone. There was no chemical incompatibility between the drug and polymer from the observed Infrared (IR) spectra. Drug-polymer interactions were also investigated using Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD) and Scanning Election Microscopy (SEM). In conclusion, the dissolution rate and solubility of azithromycin were found to improve significantly, using hydrophilic carriers, especially PEG 6000.


2019 ◽  
Vol 11 (1) ◽  
pp. 241 ◽  
Author(s):  
D. Christopher Vimalson ◽  
S. Parimalakrishnan ◽  
N. S. Jeganathan ◽  
S. Anbazhagan

Objective: The present study was aimed to enhance the solubility of poorly water-soluble drug (BCS Class II) Febuxostat using water-soluble polymers.Methods: Pre-formulation studies like drug excipient compatibility studies by Fourier-transform infrared spectroscopyDifferential scanning calorimetry and determination of saturation solubility of drug individually in various media like distilled water and pH 7.4 phosphate buffer. Solid dispersions of Febuxostat was prepared using Polyethylene glycol (PEG 6000) (fusion method) and Polyvinyl pyrrolidone (PVP K30) (solvent evaporation method) in various ratios like 1:1, 1:2, 1:3 and 1:4 separately. The formulated solid dispersions were evaluated for percentage yield, drug content and in vitro dissolution studies.Results: From the results of pre-formulation studies it was revealed that there was no interaction between drug and excipients and the pure drug was poorly soluble in water. The percentage yield of all formulations was in the range of 54-78 %, and drug content was in the range of 43-78 mg. The solid dispersion containing polyvinylpyrrolidone K 30 in 1:4 ratio showed the highest amount of drug release at the end of 30 min than other formulations.Conclusion: Finally it was concluded that solid dispersion prepared with PVP K-30 in 1:4 ratio by solvent evaporation method was more soluble than by fusion method.


Author(s):  
MAHAPARALE PR ◽  
THORAT VP

Objective: Leflunomide is Non steroidal Anti-Inflammatory drug, which is poorly water soluble. In present study attempt has been made to prepare and characterize solid dispersions of leflunomide to increase solubility of drug.Method:  In Preparation of solid dispersion of leflunomide different polymer like PEG 4000, PEG 6000, Poloxamer 188 and Poloxamer 407 were used.  Effects of several variables such as type of carrier used, drug: carrier ratios, method of preparation were studied. The evaluation of solid dispersions was done by solubility study, dissolution study and X-ray diffractometry. Result: Improvement in dissolution of drug was observed in all solid dispersions as compared to pure drug alone. Solid dispersions prepared using Poloxamer 188 showed fastest in vitro drug release. Solid dispersions prepared using solvent evaporation method showed relatively faster drug release than melt evaporation method. XRD patterns indicated reduced crystallinity of drug particles, which suggests mechanism of enhanced solubility and dissolution of drug in solid dispersion systems.Conclusion:  A significant result obtained with the study indicated that solid dispersion by solvent evaporation can successfully be further explored and employed to improve solubility and dissolution characteristics of poorly soluble drugs.Keywords: Leflunomide, Solid dispersion, Carrier


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Sangeetha ◽  
M.K. Samanta ◽  
B. Suresh ◽  
N. Ramesh ◽  
...  

Domperidone is a highly water insoluble drug exhibiting poor dissolution pattern. This is the cause for its poor absorption. Currently, several products of this drug substance is available in the market. Solid dispersions of domperidone were prepared using different ratios of polyvinylpyrrolidone as carrier by kneading method. They were evaluated for drug content, intactness of the drug in the formulation and dissolution. IR spectral and DSC studies were used to characterize the solid dispersion and to study the possibility of complexation of drug with carrier. The dissolution of domperidone from the solid dispersions exhibited higher rates of dissolution and dissolution efficiency values over that of pure drug


Author(s):  
Mohan M Varma ◽  
Satish Kumar P

Gliclazide is an anti-diabetic drug. It is a BCS class-II (poorly water soluble) drug and its bioavailability is dissolution rate limited. The dissolution rate of the drug was enhanced by using the solid dispersion technique. Solid dispersions were prepared using PVP-K30 (polyvinylpyrrolidone) and hydroxypropyl-β-cyclodextrin (HP BCD) as the hydrophilic carriers. The solid dispersions were characterized by using DSC (Differential scanning calorimetry), XRD (X-ray diffractometry) and FTIR (Fourier transform infrared spectroscopy). Solid dispersions were formulated into tablets. The formulated tablets were evaluated for the quality control parameters and dissolution rates. The solid-dispersion tablets enhanced the dissolution rate of the poorly soluble drug. The optimized formulation showed a 3 fold faster drug release compared to the branded tablet. The XRD studies demonstrated the remarkable reduction in the crystallinity of the drug in the solid dispersion. The faster dissolution rate of the drug from the solid dispersion is attributed to the marked reduction in the crystallinity of the drug. The DSC and FTIR studies demonstrated the absence of the drug-polymer interaction.


Author(s):  
Sandeep Doppalapudi ◽  
Vidyadhara Suryadevara ◽  
Sailaja Yallam ◽  
Sowjanya Lakshmi Battula ◽  
Vanya Nayudu

The present work mainly focuses on solubility enhancement of poorly soluble drugs using superdisintegrants. One of such poorly soluble drugs is Atorvastatin, which belongs to the category of statins. Atorvastatin belongs to BCS class – II, which is poorly water soluble and highly permeable. Natural sources are now-a-days playing a key role in pharmaceutical research. They have several pharmaceutical applications. Starches obtained from plants are pharmaceutically useful as binders, diluents, disintegrants and lubricants. Various physical parameters were evaluated. Solid dispersions were prepared using solvent evaporation technique. Where as in solid dispersions, formulations F2 and F5 showed better dissolution rate compared with other formulations. Fourier Transform Infra red spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC) studies for optimized formulations revealed that there were no major interactions between the drug and excipients. X-Ray Diffraction (XRD) studies revealed the crystalline and amorphous nature of formulations. Scanning Electron Microscopy (SEM) revealed the surface characteristics. Thus from the present study, it was concluded that Entada scandens seed starch posses superdisintegrant property.


Sign in / Sign up

Export Citation Format

Share Document