scholarly journals DETERMINATION OF 4, 4′-BIS (BROMOMETHYL) BIPHENYL GENOTOXIC IMPURITY IN VALSARTAN DRUG SUBSTANCES BY HPLC

Author(s):  
S. Senthil Kumar ◽  
Ritesh Kumar Srivastava ◽  
V. Srinivasrao

Objective: The objective of the present study was to develop and validate a specific and sensitive analytical method, which separate the genotoxic impurity 4, 4’-bis (bromomethyl) biphenyl from valsartan antihypertensive drug substance using HPLC method.Methods: The development activity was conducted by HPLC with UV detector. The impurity was separated on Inertsil ODS 3V 250 x 4.6 mm, 5 µm analytical column with a mobile phase consisting of 5.5 pH buffer and acetonitrile with the gradient program at a flow rate 1.0 ml/min. The effluent was detected using UV detector attached with HPLC system at 275 nm meanwhile column temperature and injection volume was maintained to 35 °C and 50 μl respectively. Acetonitrile was selected as diluent for performing the experiment.Results: Whole experiment and validation process was performed as per the ICH guideline. The LOD and LOQ value were found to be 0.153 µg/g and 0.463 µg/g respectively, while accuracy results were well in the range 97.62 to 104.59%. The linearity curve showed a correlation coefficient of 0.9994 and method was very sensitive.Conclusion: From validation data, it was confirmed that the developed method is specific, sensitive, linear, precise and accurate for the determination of 4, 4’-bis (bromomethyl) biphenyl genotoxic impurity in valsartan drug substances.

Author(s):  
S. Senthil Kumar ◽  
Ritesh Kumar Srivastava ◽  
V. Srinivas Rao

<p><strong>Objective: </strong>The objective of present study was to develop and validate a specific and sensitive HPLC method for the quantitative determination of genotoxic impurity 2-cyano-4’-bromomethyl biphenyl present in irbesartan drug substance.</p><p><strong>Methods: </strong>The development activity was conducted by HPLC with UV as a detector. The impurity was separated on Kromasil C18 250 x 4.6 mm, 5 µm analytical column with a mobile phase consisting of buffer pH 3.2 and acetonitrile in the ratio of 60:40 v/v at a flow rate 1.5 ml/min. The effluent was monitored by UV detection at 258 nm with column temperature maintained at 40 °C and the injection volume 30 μl. Acetonitrile was selected as diluent.</p><p><strong>Results: </strong>Validation activity was planned and completed based on the ICH guideline. The LOD and LOQ value were found to be 0.167 µg/g and 0.506 µg/g and accuracy results were well in the range 98.34 to 103.46 %. The linearity curve showed the correlation coefficient of 0.9999 and method very sensitive.</p><p><strong>Conclusion: </strong>From validation data, it was confirmed that the developed method is specific, sensitive, linear, precise and accurate for the determination of 2-cyano-4’-bromomethyl biphenyl genotoxic impurity in irbesartan drug substances.</p>


Author(s):  
Kishorkumar L. Mule

Objective: To develop and validate new, simple and rapid assay method for Prochlorperazine edisylate drug substance by UPLC as per ICH guidelines.Methods: Ultra performance liquid chromatographic method was developed, optimized and validated on Acquity UPLC by using Acquity BDH300 C4 (100 x 2.1 mm) 1.7µ column. 3.85g ammonium acetate in 1000 ml of water add 0.5 ml trifluoroacetic acid and 1 ml triethylamine (Mobile phase A): 0.5 ml trifluoroacetic acid in 1000 ml acetonitrile mobile phase (Mobile phase B) with gradient program. Detector wavelength 254 nm and column temperature 30 °C.Results: Linearity study was carried out for prochlorperazine edisylate, linearity was calculated from 80 % level to 120% with respect to specification level. The correlation coefficient (r) = 0.999 was proved that the method is robust. The resolution between known impurities and Prochlorperazine edisylate found more than 2.5, it was evident from specificity test that Prochlorperazine edisylate peak are well separated from its related impurities, hence the method is specific. Prochlorperazine edisylate sample solution and mobile phase were found to be stable for at least 3 d.Conclusion: A new, simple and rapid method has been developed and validated for assay determination of prochlorperazine edisylate in drug substance by Ultra Performance Liquid Chromatography (UPLC). The analytical method was developed and validated as per ICH guidelines. The developed method can be used for the fast assay determination of prochlorperazine edisylate drug substances in research laboratories and in the pharmaceutical industry. 


2013 ◽  
Vol 864-867 ◽  
pp. 503-507
Author(s):  
Tao Wang

In this experiment, the main compounds of stilbene glucoside and anthraquinones from polygonum multiflorum extract were separated by HPLC gradient elution. SinoChrom ODS-BP C18 is selected as chromatographic column. The optimal experimental conditions under 254nm wavelength UV detector include the column temperature: 26°C, mobile phase: methanol/water, and flow rate: 1.0ml/mol. The gradient method can be optimized by changing the steepness and shape of gradient elution. Through optimizing gradient method, the separation efficiency is improved within a certain range of gradient elution strength. This article provides important reference for quality control and content determination of fleece-flower root.


2018 ◽  
Vol 15 (1) ◽  
pp. 32-38 ◽  
Author(s):  
Bürge Aşçı ◽  
Mesut Koç

Introduction:This paper presents the development and validation of a novel, fast, sensitive and accurate high performance liquid chromatography (HPLC) method for the simultaneous quantitative determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical preparations.Experiment:Development of the chromatographic method was based on an experimental design approach. A five-level-three-factor central composite design requiring 20 experiments in this optimization study was performed in order to evaluate the effects of three independent variances including mobile phase ratio, flow rate and amount of acid in the mobile phase.Conclusion:The optimum composition for mobile phase was found as a methanol:water:acetic acid mixture at 71.6 : 26.4 : 2 (v/v/v) ratio and optimum separation was acquired by isocratic elution with a flow rate of 1.3 mL/min. The analytes were detected using a UV detector at 240 nm. The developed method was validated in terms of linearity, precision, accuracy, limit of detection/quantitation and solution stability and successfully applied to the determination of dibucaine HCl, fluocortolone pivalate and fluocortolone caproate in pharmaceutical topical formulations such as suppositories and ointments.


INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (11) ◽  
pp. 46-50
Author(s):  
Z. G Khan ◽  
◽  
S. S. Patil ◽  
P. K. Deshmukh ◽  
P. O. Patil

Novel, isocratic reversed phase high performance liquid chromatography method was developed and validated for the determination of enzalutamide (EZA) in bulk drug and pharmaceutical formulation. Efficient separation was achieved on PrincetonSPHER C18 100A, 5μ (250×4.6 mm) under the isocratic mode of elution using acetonitrile: water (80:20) % V/V as a mobile phase pumped in to the column at flow rate 1.0 mL/min. The effluent was monitored at 237.0 nm using UV detector. EZA was eluted in the given mobile phase at retention time (tR) of 3.2 minutes. The standard calibration curve was linear over the concentration range 10 - 60 μg/mL with correlation coefficient 0.997. The method was validated for accuracy, precision, sensitivity, robustness, ruggedness and all the resulting data treated statistically. The system suitability parameters like retention time, theoretical plates, tailing factor, capacity factor were found within the limit.


Author(s):  
L. S. Logoyda

The aim of this study was the rubustness evaluation of the chromatographic determination of verapamil hydrochloride using Youden’s test.Methods: Youden’s test is a reliable method to evaluate the robustness of analytical methods, by means of an experiment design which involves seven analytical parameters combined in eight tests. In the present study, we assessed the robustness of a chromatographic method to quantify verapamil hydrochloride using Youden’s test. Hence, it was possible to determine the effect of each analytical parameter in the final analysis results. Youden’s test showed to be a simple and feasible procedure to evaluate the robustness of chromatographic methods.Results: Using the criteria of Youden’s test, the chromato­graphic method showed to be highly robust regarding the verapamil hydrochloride content, when variations in seven analytical parameters were introduced. The highest variation in the verapamil hydrochloride content was 0.26 %, when the concen­tration of triethylamine in the mobile phase was altered; a value considerably low and not significant in routine analyses.Conclusion: Youden’s test showed to be a reliable and useful tool for the robustness evaluation of the chromatographic method for verapamil hydrochloride quantitation. By means of this test, it was possible to evaluate the effect of seven analytical parameters in the final result of the analyses. Therefore, Youden’s test can be successfully applied for the ro­bustness evaluation in validation process of analytical methods by HPLC.


Author(s):  
Suresh Babu Bodempudi ◽  
Ravi Chandra Babu Rupakula ◽  
Konda S. Reddy ◽  
Mahesh Reddy Ghanta

Objective: The main objective of present study was to Isolate, characterize and validate a reverse phase high performance liquid chromatographic method was validated for quantification of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine in Olanzapine drug substance; it decreases the mental disorders in human body. The method is specific, rapid, precise and accurate for the separation and determination of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine in Olanzapine drug substance form.Methods: The bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine of Olanzapine was resolved on a Zorbax RX-C 8, 250 mm X 4.6 mm, 5 micron column (L-1) using a mobile phase system containing 0.03 M sodium dodecyl sulphate in water pH 2.5 with 1 N sodium hydroxide solution and acetonitrile in the ratio of (Mobile phase A-52:48 v/v) and (Mobile phase B-buffer and Acetonitrile 30:70 v/v) by using the gradient program. The mobile phase was set at a flow rate of 1.5 ml/min and the volume injected was 20μl for every injection. The detection wavelength was set at 220 nm and the column temperature was set at 35 °C.Results: The proposed method was productively applied for the quantitative determination of bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo [f]azulene)]-1,4-piperazine in Olanzapine drug substance form. The linear regression analysis data for calibration plots showed a good linear relationship over a concentration range of 0.025to 0.903 µg/ml for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine, 0.081-0.608 µg/ml for Olanzapine. The mean values of the correlation coefficient were 0.999 and 0.999 for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine. The method was validated as per the ICH guidelines. The detection limit (LOD) was about 0.007 µg/ml, 0.024 µg/ml and quantitation limit (LOQ) was about 0.024 µg/ml, 0.081 µg/ml for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine. The relative standard deviation was found to be 1.64 % and 2.18 % for bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine and Olanzapine.Conclusion: The validated HPLC method and the statistical analysis showed that the method is repeatable and selective for the estimation of the bis-[10-(2-methyl-4H-3-thia-4,9-diazabenzo[f]azulene)]-1,4-piperazine of the Olanzapine drug substance.


2010 ◽  
Vol 75 (11) ◽  
pp. 1583-1594 ◽  
Author(s):  
Miroslav Milenkovic ◽  
Valentina Marinkovic ◽  
Predrag Sibinovic ◽  
Radosav Palic ◽  
Dragan Milenovic

An HPLC method for digoxin quantification in dissolution samples obtained as per the official British Pharmacopeia (BP) method is presented in this paper. The chromatography was performed at 20 ?C on a Symmetry C18; 3.5 ?m, 75 x 4.6 mm column with water - acetonitrile (72 : 28, v/v), as the mobile phase and UV detection at 220 nm. The method was found to be selective, linear, accurate and precise in the specified ranges. The LOD and LOQ were 0.015 ?g mL-1 and 0.050 ?g mL-1, respectively. Robustness testing was conducted to evaluate the impact of minor changes in the chromatographic parameters (i.e., acetonitrile fraction, flow rate of the mobile phase, column temperature and column length) on the characteristics of the digoxin peak. A. full factorial design (24) was used to investigate the influence of the four variables The presented HPLC method was applied in quality and stability testing of Digoxin tablets 0.25 mg.


1987 ◽  
Vol 70 (5) ◽  
pp. 829-833
Author(s):  
Linda L Ng

Abstract The determination of the steroid acetates was evaluated for ruggedness of the method by using an octyldecylsilane column, 254 nm detection, and acetonitrile-water as mobile phase. Mobile phase pH, oven temperature, and columns from various manufacturers had no dramatic effect on the chromatography. The method was then optimized for dexamethasone acetate and cortisone acetate bulk drug and dosage forms. For dexamethasone acetate, the bulk drug substance should be dried at 105°C before use, and the sample should be dissolved in 50% acetonitrile-buffer pH 6 for stability. Cortisone acetate, on the other hand, was found to be nonhygroscopic and hence could be used as received. For stability, the sample should be stored in 50% acetonitrile-buffer pH 4


2013 ◽  
Vol 19 (3) ◽  
pp. 333-337 ◽  
Author(s):  
A.C. Arvadiya ◽  
P.P. Dahivelker

A simple, precise, accurate, sensitive and repeatable RP-UPLC method was developed for quantitative determination of atropine sulphate in pharmaceutical dosage form. The method was developed by using C18 column Hiber HR Purospher Star (100mm?2.1mm id, 2?m particle size) as stationary phase with Phosphate Buffer: Acetonitrile (87:13, %v/v) as a mobile phase, pH was adjusted to 3.5 by ortho-phosphoric acid at a flow rate of 0.5 mL/min and column temperature maintained at 30?C. Quantification of eluted compound was achieved with PDA detector at 210 nm. Atropine sulphate followed linearity in concentration range of 2.5-17.5 ?g/mL with r2=0.9998 (n=6). Limit of detection (LOD) and limit of quantification (LOQ) values were 0.0033 and 0.0102 ?g/mL for atropine sulphate. The validation study is carried out as per International Conference on Harmonization (ICH) guidelines. This method was successfully applied for estimation of atropine sulphate in pharmaceutical formulation.


Sign in / Sign up

Export Citation Format

Share Document