scholarly journals INFLUENCE OF BINDING SOLUTION CONCENTRATION, DRYING DURATION AND DRYING TEMPERATURE ON PHYSIOCHEMICAL PERFORMANCE OF NORFLOXACIN GRANULES AND TABLETS

Author(s):  
ZUHAEIR OSMAN ◽  
NEMAT S. ADAM ◽  
HASSAN A. HASSAN ◽  
ABUBAKR O. NUR

Objective: To investigate the possible individual and joined influences that binding solution concentration, drying temperature and drying duration might have on the physiochemical attributes of granules and tablets using norfloxacin as a model drug. Methods: According to implemented 23 central composite designs, each of the investigated variables were examined at 5 different levels through different 16 formulation runs. For each formulation, obtained granules were qualified for their bulk density, tap density, Hausner ratio, percent of fine and drug content properties whereas the respective tablets were evaluated for their weight variation, drug content, friability, hardness, disintegration, and drug dissolution attributes. Results: Indicated that concentration of binder solution, as compared to drying temperature and drying duration, measured more profound influences on granules' tap density, Hausner ratio, % fine and drug content either through its individual linear and quadratic effects or through its joint effect with drying durations (p<0.05 at 95% CI for all influences). Whilst tablets' friability appeared to be noticeably influenced by the three investigated variables (P ranged 0.001-0.017 at 95% CI), tablets' hardness and disintegration were found to be considerably affected only by binder solution concentration (p = 0.001 and 0.082 at 95% CI, respectively). Moreover, none of the investigated variables has measured a significant influence on tablets' drug content or drug dissolution properties. Conclusion: The study concluded that quadratic and joint influences of variables on attributes of granule and tablet formulations shouldn't be overlooked and better to be considered in the screening design.

Author(s):  
Mahendar Rupavath ◽  
K. S. K Rao

The objective of the present investigation was to identify a suitable raft forming agent and to develop raft forming stavudine matrix tablets using different rate controlling natural, semi-synthetic and synthetic polymers to achieve prolonged gastric residence time, leading to an increase in drug bioavailability and patient compliance. Various raft forming agents were used in preliminary screening. Raft forming floating tablets were developed using pullulan gum as natural rate controlling polymer, and directly compressible grades of hydroxypropyl methylcellulose (Benecel K4M DC) as semi synthetic, and Carbopol 71G as synthetic rate controlling polymers respectively and optimum concentrations of sodium-bicarbonate as gas generating agent to generate optimum buoyancy by direct compression method. Raft forming tablets were evaluated for weight variation, thickness, hardness, friability, drug content, in vitro drug release, floating buoyancy and raft strength. Drug-excipients compatibility study showed no interaction between drug and excipients. Raft forming tablets showed satisfactory results when evaluated for weight variation, thickness, hardness, friability, drug content, and raft strength. The optimized formulation was selected based on physicochemical characteristics and in vitro drug dissolution characteristics. Further, the optimized formulation was evaluated for in vivo radiographic studies by incorporating BaSO4 as radio opaque substance. Optimized formulation showed controlled and prolonged drug release profiles while floating and raft formation over the dissolution medium. Diffusion followed by erosion with raft forming drug release mechanism was observed for the formulation, indicating that dissolution media diffusion and polymer erosion played an essential role in drug release. In vivo radiographic studies revealed that the raft forming formulations remained in the stomach for 240 30 min in rabbits and indicated that gastric retention time was increased by the floating and raft forming principle, which was considered and desirable for absorption window drugs.


2020 ◽  
Vol 10 (1) ◽  
pp. 5-10
Author(s):  
Muhammad Abbas ◽  
Musharraf Abbas ◽  
Fatima Tariq ◽  
Rabiya Yasin ◽  
Muhammad Nabeel

In the modern era, chewable tablets are preferred over conventional dosage forms by pediatric, geriatric and bedridden patients due to difficulty in swallowing, lesser amount of water for swallowing medications as well as unable to tolerate the bitter taste of certain drugs. Chewable tablets of Desloratadine (DS) were formulated by aqueous and non-aqueous granulation method using water paste and Isopropyl alcohol (IPA) as a wetting agents respectively. Desloratadine is used to treat the symptoms of allergy such as sneezing, watery eyes. In the recent research, we have formulated eight trials by various concentrations of excipients. For instance; lactose, talcum, magnesium stearate, blue color, flavor, aspartame, mannitol, avicel 101 and polyvenylpyrollidine (PVP). Pre-compression and post compression parameters (thickness, hardness, friability weight variation and drug content) of the formulations were evaluated. B3 was our optimum dosage form because its Hausner’s ratio, compressibility index, bulk density, tap density, angle of repose have optimum values i.e. 1.01, 5.1%, 0.66(g/cc), 0.69(g/cc), 26.1º respectively and post-compression i.e. thickness, hardness, friability weight variation and drug content have values, 2.9mm, 3.9(kg/cm²), 0.6%, 99.5% respectively. Tablets prepared by wet granulation technique showed reasonable release profile i.e. 100% within the required time i.e. 2 hours.  Moreover, organoleptic evaluation of all formulations were performed. Keywords: Desloratadine, chewable, magnesium stearate, aspartame, compressibility, granulation.


Author(s):  
Sudarshan Singh ◽  
S S Shyale ◽  
P Karade

The aim of this study was to design orally disintegrating tablet (ODT) of Lamotrigine. It is an Antiepileptic drug which is widely used in epilepsy. It is also used in simple and complex partial seizures and secondary generalized tonic-clonic seizures. It is poorly water soluble drug (0.46 mg/ml). Thus, an attempt was made to enhance the water solubility by complexation with β-cyclodextrin (1:1 molar ratios). The orally disintegrating tablet of lamotrigine was prepared by direct compression method using different concentration of superdisintegrants such as Sodium starch glycollate, croscarmellose sodium by sublimating agent such as camphor. The formulations were evaluated for weight variation, hardness, friability, drug content, wetting time, in vitro disintegration time and in vitro dissolution studies. The prepared tablets were characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry. The disintegration time for the complexed tablets prepared by different concentration of superdisintegrants was found to be in range of 32.54 ± 0.50 to 55.12 ± 0.57 sec and wetting time of the formulations was found to be in range of 28.47 ± 0.67 to 52.19 ± 0.72 sec. All the formulation showed almost 100 percent of drug release within 15 min. Among all the formulation F6 and F7 prepared with 18% croscarmellose sodium and camphor shows faster drug release, respectively 10 min, F6 gives good result for disintegration time, drug release, wetting time and friability. Further formulations were subjected to stability testing for 30 days at temperature of 40 ± 5 ºC/75 ± 5 %RH. Tablets showed no appreciable changes with respect to physical appearance, drug content, disintegration time and dissolution profiles. Results were statistically analyzed by one-way ANOVA at a p < 0.05. It was found that, the data at any point of time are significant at p < 0.05.


Author(s):  
Bhavana Habib ◽  
Jyoti Mittha

The aim of the present study was the evaluation and comparison between four different Metformin and Vildagliptin tablets which are commercially available in Indian market. These tablets were assessed for various pharmacopoeial quality control tests. Parameters including weight variation, hardness, friability, drug content, and disintegration time were evaluated. Results were within acceptable limits for all selected products (three generic and an innovator). These results show that the tested generic products were biopharmaceutically similar to the innovator formulation. Therefore, the consumer can select any one of these equivalent products as a substitute for innovator product in case of cost concern or unavailability.


Author(s):  
Ahmed Abdulameer Albadry ◽  
Wedad K. Ali ◽  
Fouad A. Al-saady

<p><strong>Objective: </strong>The objective of this study was to formulate once daily sustained oral release floating tablet of prochlorperazine maleate, this floating tablet has many advantages like reduction in dosing frequency, increase bioavailability, enhance patient compliance, and improve drug solubility.</p><p><strong>Methods: </strong>The prochlorperazine maleate floating tablets were formulated by using hydrophilic swellable polymer and gas generating agent. In this study, 15 formulas were prepared with many variables in order to achieve an optimum dissolution and floating behaviour for the floating tablet. The all prepared formulas were tested for bulk density, tap density, angle of repose, Carr's Index, thickness, weight variation, hardness, friability, drug content, <em>in vitro</em> dissolution test, <em>in vitro </em>buoyancy, and swelling index.</p><p class="Default"><strong>Results: </strong>Formula (F2) that contain 55% (w/w) <a href="https://www.google.iq/url?sa=t&amp;rct=j&amp;q=&amp;esrc=s&amp;source=web&amp;cd=3&amp;ved=0ahUKEwjh383ow9LPAhWF6RQKHRChCVgQFggpMAI&amp;url=https%3A%2F%2Fwww.ulprospector.com%2Fen%2Fna%2FFood%2FDetail%2F895%2F563462%2FBenecel-Hydroxypropylmethylcellulose-HPMC-K4M&amp;usg=AFQjCNGgfyJECkumK5cpU_6luVwwJ2fKxA&amp;bvm=bv.135258522,d.d24">hydroxypropyl methylcellulose</a> k4M (HPMCK4M), 5 % (w/w) sodium bicarbonate (NaHCO<sub>3</sub>) have acceptable flow properties and compressibility index and good physical properties with floating lag time (16±0.57) seconds and total floating time (32±0.29) h with 100% release of prochlorperazine maleate at the end of 24 h. Fourier transform infrared spectroscopy (FTIR) study of optimum formula (F2) showed no chemical interaction between the drug and the excipients that used in the formula.<strong></strong></p><p><strong>Conclusion: </strong>It can be concluded that that the selected formula (F2) can be a promising formula for the preparation of gastro retentive floating drug delivery systems of prochlorperazine maleate.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Mohammed Ghazwani ◽  
Umme Hani ◽  
Riyaz Ali M. Osmani ◽  
Mohamed Rahamathulla ◽  
M. Yasmin Begum ◽  
...  

Aim. The study is aimed at developing curcumin suppositories as a promising approach for natural antifungal management of vaginal candidiasis in cervical cancer patients to eradicate side effects produced by current antifungal drugs. The objective of the study was to optimize the suppositories using optimal (custom) design employing Design-Expert 13 software to recognize the concentration of polyethylene glycols (PEG) and Poloxamer 407 and obtain a stable suppository. Methodology. Combinations of PEG 1500 (10%–40%), PEG 6000 (40%–60%), and Poloxamer 407 (5%–30%) were entered as factors, and the responses evaluated were hardness, deformation time, and % drug release. In addition, the formulation was also evaluated for visual examination, weight variation, pH determination, drug content, hardness test, disintegration time, melting zone, deformation time, in vitro drug release, antifungal activity, and stability tests. Results. Suppositories were devoid of holes and cracks, with a characteristic odor and a dark yellowish-orange color. All formulations passed the weight variation test. Formulations exhibited pH ranging from 5.5 to 6.5. Drug content was observed to be 98.65 ± 0.041 % – 99.85 ± 0.041 % . The hardness of the formulation was between 2.9 and 4.2 kg/cm2. The disintegration time ranged from 11 ± 0.052   min to 20 ± 0.011   min . The melting point was between 41 ± 0 . 31 ° C and 58 ± 0 . 62 ° C . Deformation time ranged from 10 ± 0.45 to 35 ± 0.52   min . Most of the formulations resulted in 90% of drug release at 40 min, and the zone of inhibition noted was 19.6 ± 0.4   mm . All the selected factors have a significant effect on the response chosen for the study. Conclusion. The optimized curcumin vaginal suppository formulation can be an efficient herbal treatment devoid of side effects to treat vaginal candidiasis in cervical cancer patients.


2019 ◽  
Vol 9 (6) ◽  
pp. 55-63 ◽  
Author(s):  
Mulchand A. Shende ◽  
Kajal D Chavan

SeDeM design expert technique used to evaluate the risks of poor flow of pharmaceutical powders under preformulation studies which reveals direct compression suitability and prepare robust composition of active pharmaceutical ingredient (API) and excipient in tablets formulation. The purpose of this study was to develop oral disintegrating tablets of Furosemide using different concentration of natural and synthetic superdisintegrants by means of SeDeM design technique. Oral disintegrating tablets (ODT) of Furosemide were prepared by direct compression technique using isolated banana powder and croscarmellose sodium (Ac-di-sol) together with microcrystalline cellulose as superdisintegrants. SeDeM design was performed to check suitability and deficient of excipients and drug for optimized composition derived based on IPP value. These tablets were evaluated for hardness, friability, drug content, weight variation, wetting time and in-vitro dissolution. All the formulations showed low weight variation with dispersion time less than 173.5±0.70 seconds and rapid in-vitro dissolution. The drug content of all the formulations was within the acceptable limits. Lubricated blend composition of F4 found average radius value 5.24, 0.66 and 5.509 for IGC, IP and IPP respectively, compressed tablet shown good physical properties. The optimized formulation F4 showed good release profile with 99.25 percentage drug release compared to other trial batches. It was concluded that natural superdisintegrant (banana powder) showed better disintegrating property than synthetic super disintegrant (Ac-di-sol) in the formulations of ODTs. Keywords: Furosemide, Oral disintegrating tablets, SeDeM expert system, Superdisintegrants


2014 ◽  
Vol 12 (2) ◽  
pp. 119-123
Author(s):  
MS Ashwini ◽  
Mohammed Gulzar Ahmed

The study was designed for the investigation of pulsatile device to achieve time or site specific release of Losartan potassium based on chronopharmaceutical considerations. The basic design involves the preparation of cross linked hard gelatin capsules by using formaldehyde, then the drug diluent mixture were prepared and loaded in, which was separated by using hydrogel plugs of different polymers of different viscosities. Prepared formulations were subjected to evaluation of various parameters like weight variation, percentage drug content, in vitro drug release and stability studies. Weight variation and percentage drug content results showed that they were within the limits of official standards. The in-vitro release studies revealed that the capsules plugged with polymer HPMC showed better pulsatile or sustained release property as compared to the other formulations. The stability studies were carried out for all the formulations and formulations F1 & F2 were found to be stable. Dhaka Univ. J. Pharm. Sci. 12(2): 119-123, 2013 (December) DOI: http://dx.doi.org/10.3329/dujps.v12i2.17610


2015 ◽  
Vol 49 (3) ◽  
pp. 173-180
Author(s):  
T Ayyappan ◽  
C Poojitha ◽  
T Vetrichelvan

In the present work, orodissolving tablets of Efavirenz were prepared by direct compression method with a view to enhance patient compliance. A 23 full factorial design was applied to investigate the combined effect of three formulation variables. Amount of crospovidone, croscarmellose sodium and sodium starch glycolate were used as superdisintegrant material along with direct compressible mannitol to enhance mouth feel. The prepared batches of tablets were evaluated for hardness, friability, weight variation, disintegration time, wetting time, drug content and in-vitro dissolution studies. Based on wetting time, disintegration time, the formulation containing crospovidone (5% w/v), carscarmellose sodium (5% w/v) and sodium starch glycolate (8% w/v) was found to be promising and tested for in-vitro drug release pattern (in 0.1 N HCl), short term stability and drug- superdisintegrants interaction. Surface response plots are presented to graphically represent the effect of independent variables (conc. of superdisintegrants) on the in-vitro dissolution time. The validity of the generated mathematical model was tested by preparing extra-design check point formulation. The formulation showed nearly faster drug release compared to the conventional commercial tablet formulation. Stability studies on the optimized formulation indicated that there was no significant change found in physical appearance, hardness, disintegration time, drug content and in-vitro drug release. DOI: http://dx.doi.org/10.3329/bjsir.v49i3.22131 Bangladesh J. Sci. Ind. Res. 49(3), 173-180, 2014


2019 ◽  
Vol 9 (4-s) ◽  
pp. 462-468
Author(s):  
Mohd. Razi Ansari ◽  
Sumer Singh ◽  
M.A. Quazi ◽  
Yaasir Ahmed Ansari ◽  
Jameel Abbas

Among the different type of route of administration oral route for drug administration is most common route in which Orodispersible tablet is preferred for the patient which are unconscious, week or for immediate control. The tablet gets dispersed in mouth cavity without water, present study deals with formulation of Naproxen sodium mouth dissolving tablets using super disintegrants. Naproxen sodium is analgesic and NSAID, used for the treatment of pain and inflammation caused by different condition such as osteoarthritis, rheumatoid arthritis and menstrual cramps. However gastric discomfort caused by naproxen sodium result in poor patient compliance associated with it conventional doses form but now days Naproxen sodium MDTs produces rapid onset of action and minimise gastric discomfort associated with it. Thus improves patient compliance, enhance bioavailability and reduces the dose of drug. MDTs are formulated by direct compression method using super disintegrants in different proportion. The powder blend is subjected to pre-compression evaluation parameters like bulk density, true density, and tapped density and angle of repose. Formulations are evaluated for weight variation, hardness, wetting time, water absorption time, disintegration time. And in vitro dissolution studies and all formulations complies Pharmacopoeias standards. The tablets are evaluated and result compared for all five formulation the most efficacious super disintegrants for MTDs of Naproxen sodium as suggested by the dispersion time, disintegration time and drug dissolution profiles. Keywords: - MDT, Naproxen Sodium, crosscarmellose Sodium, Sodium starch glycolate, Cross-povidone.


Sign in / Sign up

Export Citation Format

Share Document