Structural and Dielectric Properties of Polyurethane Palm Oil Based Filled Empty Fruit Bunch

Author(s):  
S. N. S. Mahmud ◽  
M. A. Jusoh ◽  
K. Y. You ◽  
N. Salim ◽  
S. Shaheen ◽  
...  
2020 ◽  
Vol 981 ◽  
pp. 169-175
Author(s):  
Syarifah Norsuhaila Syed Mahmud ◽  
Mohamad Ashry Jusoh ◽  
You Kok Yeow ◽  
Fahmiruddin Esa

Nowadays, the usage of blowing agent in polyurethane preparation has been an essential enhance the characterization of polymers or composites material. The use of blowing agent may affect the properties of the materials and directly alter the performance of resulting product. In this paper, the effect of a blowing agent on dielectric properties of palm oil-based polyurethane (POlyOP) have been studied. The palm oil-based polyurethane ( POlyOP) has been prepared using the presence of water act as a blowing agent and tegostab 8486 act as a surfactant. The Oil Palm Empty Fruit Bunch (EFB) was used in the composite as filler. The dielectric constant and loss factor analysis in this study was carried out by Vector Network Analyzer (VNA) at x-band frequency using Nicholson-Ross-Weir (NRW) technique. The dielectric study of PolyOP composite showed that the presence of blowing agent in composite enhance the value of dielectric properties of composite at x-band frequencies.


2019 ◽  
Vol 2 (1) ◽  
pp. 59-64
Author(s):  
Vincentius Vincentius ◽  
Evita H. Legowo ◽  
Irvan S. Kartawiria

Natural gas is a source of energy that comes from the earth which is depleting every day, an alternative source of energy is needed and one of the sources comes from biogas. There is an abundance of empty fruit bunch (EFB) that comes from palm oil plantation that can become a substrate for biogas production. A methodology of fermentation based on Verein Deutscher Ingenieure was used to utilize EFB as a substrate to produce biogas using biogas sludge and wastewater sludge as inoculum in wet fermentation process under mesophilic condition. Another optimization was done by adding a different water ratio to the inoculum mixture. In 20 days, an average of 6gr from 150gr of total EFB used in each sample was consumed by the microbes. The best result from 20 days of experiment with both biogas sludge and wastewater sludge as inoculum were the one added with 150gr of water that produced 2910ml and 2185ml of gas respectively. The highest CH 4 produced achieved from biogas sludge and wastewater sludge with an addition of 150gr of water to the inoculum were 27% and 22% CH 4 respectively. This shows that biogas sludge is better in term of volume of gas that is produced and CH percentage.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 81
Author(s):  
Hironaga Akita ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Shinji Fujimoto

Malaysia is the second largest palm oil producer and exporter globally. When crude palm oil is produced in both plantations and oil processing mills, a large amount of oil palm empty fruit bunch (OPEFB) is simultaneously produced as a waste product. Here, we describe the preparation of hydrolysate from OPEFB. After OPEFB was hydrothermally treated at 180–200 °C, the resultant liquid phase was subjected to high-performance liquid chromatography analysis, while the solid phase was used for acidic and enzymatic hydrolysis. Hemicellulose yield from the acid-treated solid phase decreased from 153 mg/g-OPEFB to 27.5 mg/g-OPEFB by increasing the hydrothermal treatment temperature from 180 to 200 °C. Glucose yield from the enzyme-treated solid phase obtained after hydrothermal treatment at 200 °C was the highest (234 ± 1.90 mg/g-OPEFB, 61.7% production efficiency). In contrast, xylose, mannose, galactose, and arabinose yields in the hydrolysate prepared from the solid phase hydrothermally treated at 200 °C were the lowest. Thus, we concluded that the optimum temperature for hydrothermal pretreatment was 200 °C, which was caused by the low hemicellulose yield. Based on these results, we have established an effective method for preparing OPEFB hydrolysates with high glucose content.


Cerâmica ◽  
2019 ◽  
Vol 65 (375) ◽  
pp. 359-365
Author(s):  
V. A. Coelho ◽  
C. C. Guimarães ◽  
G. G. Doutto ◽  
P. P. Pedra

Abstract Currently, palm oil is a leader in production and consumption among commercial edible oils, with a growing world production that exceeds 66 million tons per year. It is estimated that the generation of residues from the burning of palm oil empty fruit bunches as fuel in the boilers corresponds to 5% in mass of the total of oil extracted. This work evaluated the mechanical properties resulting from the use of the empty fruit bunch ashes as a partial substitute of Portland cement in mortars in different contents in 1:3 and 1:6 mixes. Mortars obtained with the use of ash presented greater deformability, implying greater workability. The results obtained pointed to potential use of the ash as filler in mortars without loss on compressive strength for contents up to 10% in the 1:3 mix and 5% in the 1:6 mix. It was observed an increase in the void index and the water absorption capacity, with a proportional reduction of the flexural strength.


Sign in / Sign up

Export Citation Format

Share Document