Compaction, mechanical strength and disintegration of palm oil empty fruit bunch (EFB) carboxymethyl cellulose (CMC) tablets

Food Research ◽  
2018 ◽  
Vol 2 (6) ◽  
pp. 520-525 ◽  
Author(s):  
N.S. Radzali ◽  
N.M. Jaafar ◽  
M.S. Anuar ◽  
S.M. Tahir
2019 ◽  
Vol 2 (1) ◽  
pp. 59-64
Author(s):  
Vincentius Vincentius ◽  
Evita H. Legowo ◽  
Irvan S. Kartawiria

Natural gas is a source of energy that comes from the earth which is depleting every day, an alternative source of energy is needed and one of the sources comes from biogas. There is an abundance of empty fruit bunch (EFB) that comes from palm oil plantation that can become a substrate for biogas production. A methodology of fermentation based on Verein Deutscher Ingenieure was used to utilize EFB as a substrate to produce biogas using biogas sludge and wastewater sludge as inoculum in wet fermentation process under mesophilic condition. Another optimization was done by adding a different water ratio to the inoculum mixture. In 20 days, an average of 6gr from 150gr of total EFB used in each sample was consumed by the microbes. The best result from 20 days of experiment with both biogas sludge and wastewater sludge as inoculum were the one added with 150gr of water that produced 2910ml and 2185ml of gas respectively. The highest CH 4 produced achieved from biogas sludge and wastewater sludge with an addition of 150gr of water to the inoculum were 27% and 22% CH 4 respectively. This shows that biogas sludge is better in term of volume of gas that is produced and CH percentage.


Fermentation ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 81
Author(s):  
Hironaga Akita ◽  
Mohd Zulkhairi Mohd Yusoff ◽  
Shinji Fujimoto

Malaysia is the second largest palm oil producer and exporter globally. When crude palm oil is produced in both plantations and oil processing mills, a large amount of oil palm empty fruit bunch (OPEFB) is simultaneously produced as a waste product. Here, we describe the preparation of hydrolysate from OPEFB. After OPEFB was hydrothermally treated at 180–200 °C, the resultant liquid phase was subjected to high-performance liquid chromatography analysis, while the solid phase was used for acidic and enzymatic hydrolysis. Hemicellulose yield from the acid-treated solid phase decreased from 153 mg/g-OPEFB to 27.5 mg/g-OPEFB by increasing the hydrothermal treatment temperature from 180 to 200 °C. Glucose yield from the enzyme-treated solid phase obtained after hydrothermal treatment at 200 °C was the highest (234 ± 1.90 mg/g-OPEFB, 61.7% production efficiency). In contrast, xylose, mannose, galactose, and arabinose yields in the hydrolysate prepared from the solid phase hydrothermally treated at 200 °C were the lowest. Thus, we concluded that the optimum temperature for hydrothermal pretreatment was 200 °C, which was caused by the low hemicellulose yield. Based on these results, we have established an effective method for preparing OPEFB hydrolysates with high glucose content.


2021 ◽  
Vol 11 (4) ◽  
pp. 80-88
Author(s):  
Muzakkir Mohammad Zainol ◽  
Nurul Suhada Ab Rasid ◽  
Mohd Asmadi ◽  
Nor Aishah Saidina Amin

The synthesis of carboxymethyl cellulose (CMC) generally uses isolated crude cellulose with alkaline or acid pretreatment followed by bleaching with sodium chlorite. In this study, the simple [BMIM][Cl] ionic liquid was used as a solvent in the pretreatment process before conduct the bleaching process with hydrogen peroxide (H2O2) to isolate cellulose from empty fruit bunch (EFB) for further synthesis of CMC. The isolated crude EFB cellulose obtained was converted to CMC by adding 30 wt.% NaOH and various concentrations of sodium monochloroacetic acid (SMCA) at 55 °C for 3 h. The effects of SMCA concentration on the degree of substitution (DS) and CMC yield were investigated. The physicochemical properties of the CMC products were characterized using proton nuclear magnetic resonance, scanning electron microscope-energy dispersive spectrometry, X-ray diffraction, and thermogravimetric analysis. Based on the results, CMC was demonstrated to be synthesized using ionic liquid pretreatment with H2O2 bleaching. Carboxymethyl cellulose synthesized in this study showed a high DS of 0.82. The CMC synthesized from EFB cellulose through ionic liquid pretreatment presented good chemical and physical properties as that reported in other studies.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3197
Author(s):  
Younghyun Shin ◽  
Dajung Kim ◽  
Yiluo Hu ◽  
Yohan Kim ◽  
In Ki Hong ◽  
...  

Carboxymethyl cellulose (CMC)-based hydrogels are generally superabsorbent and biocompatible, but their low mechanical strength limits their application. To overcome these drawbacks, we used bacterial succinoglycan (SG), a biocompatible natural polysaccharide, as a double crosslinking strategy to produce novel interpenetrating polymer network (IPN) hydrogels in a non-bead form. These new SG/CMC-based IPN hydrogels significantly increased the mechanical strength while maintaining the characteristic superabsorbent property of CMC-based hydrogels. The SG/CMC gels exhibited an 8.5-fold improvement in compressive stress and up to a 6.5-fold higher storage modulus (G′) at the same strain compared to the CMC alone gels. Furthermore, SG/CMC gels not only showed pH-controlled drug release for 5-fluorouracil but also did not show any cytotoxicity to HEK-293 cells. This suggests that SG/CMC hydrogels could be used as future biomedical biomaterials for drug delivery.


Cerâmica ◽  
2019 ◽  
Vol 65 (375) ◽  
pp. 359-365
Author(s):  
V. A. Coelho ◽  
C. C. Guimarães ◽  
G. G. Doutto ◽  
P. P. Pedra

Abstract Currently, palm oil is a leader in production and consumption among commercial edible oils, with a growing world production that exceeds 66 million tons per year. It is estimated that the generation of residues from the burning of palm oil empty fruit bunches as fuel in the boilers corresponds to 5% in mass of the total of oil extracted. This work evaluated the mechanical properties resulting from the use of the empty fruit bunch ashes as a partial substitute of Portland cement in mortars in different contents in 1:3 and 1:6 mixes. Mortars obtained with the use of ash presented greater deformability, implying greater workability. The results obtained pointed to potential use of the ash as filler in mortars without loss on compressive strength for contents up to 10% in the 1:3 mix and 5% in the 1:6 mix. It was observed an increase in the void index and the water absorption capacity, with a proportional reduction of the flexural strength.


2017 ◽  
Vol 758 ◽  
pp. 56-60 ◽  
Author(s):  
Arief Cahyanto ◽  
Atina Ghina Imaniyyah ◽  
Myrna Nurlatifah Zakaria ◽  
Zulia Hasratiningsih

Mechanical strength is one of the key factors for clinical application of injectable carbonate apatite (CO3Ap) cement. Incorporation of polymeric additives into the mixing liquid of injectable bone cement has been known to improve cement injectability. The aim of this study is to determine whether incorporation of sodium carboxymethyl cellulose (Na CMC) into the mixing liquid would affect the diametral tensile strength (DTS) of injectable CO3Ap cement. In the present study, Na CMC, a polymeric additive and a cellulose derivative, was used to promote the injectability of CO3Ap cement. Three groups of CO3Ap cement samples consist of CaCO3 and CaHPO4 powder in each group were mixed with 0.5 %, 1%, and 2% Na CMC solution incorporated to 0.2 mol/L Na2HPO4 solution. As a control, powder mixed with 0.2 mol/L Na2HPO4 solution was used. Samples were kept in an incubator (37°C, 100% relative humidity, 24 hours). The mechanical strength properties were evaluated by diametral tensile strength (DTS). The average DTS of samples containing 0.5%, 1%, and 2% Na CMC were 3.19 MPa, 3.57 MPa, and 3.06 MPa, respectively. While the average DTS of the control group was 3.29 MPa. The groups containing Na CMC in all concentrations showed no statistical difference (p>0.05) on DTS compared to the control group. The injectability improved as the concentration of Na CMC increased. In conclusion, revealed that Na CMC does not affect the mechanical strength of CO3Ap cement. Therefore, it may be considered as an effective material to promote cement injectability. Further study of additives that can be used to promote the injectability of CO3Ap cement and enhance the mechanical strength awaits based on this initial finding.


Sign in / Sign up

Export Citation Format

Share Document