scholarly journals Controller Design of Automatic Guided Vehicle for Path-Following Using Input-Output Feedback Linearization Method

Author(s):  
Nguyen Hung
Author(s):  
Omid Bagherieh ◽  
Karl Hedrick ◽  
Roberto Horowitz

Input/ output feedback linearization and smoothed sliding control methods are used to control a floating offshore wind turbine on a barge platform in high wind speed in order to regulate the power capture. The model of the turbine has the blade pitch angle as the input, generator speed, platform pitch angle and its derivative as the measurements, and wind speed as a disturbance. The designed controllers have been applied to the simplified model of the plant which is used for controller design and also a more complex model which considers all six degrees of freedom for platform movements. Moreover, their performance is compared with the baseline controller for floating offshore wind turbines [1]. Both nonlinear controllers have improved the power fluctuation compared to the baseline controller. Also, sliding control has been shown to have better performance than the input/ output controller, since it can consider the uncertainty of the disturbance signal in the controller design.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Jian Chen ◽  
Chong Lin

This paper focuses on the problems of static output feedback control andH∞controller design for discrete-time switched systems. Based on piecewise quadratic Lyapunov functions and a new linearization method, new sufficient conditions for system stability andH∞controller design are obtained. Then, an improved path-following algorithm is built to solve the problems. Finally, the merits and effectiveness of the proposed method are shown by two numerical examples.


Sign in / Sign up

Export Citation Format

Share Document