scholarly journals Effect of Sodium lignosulphonate-based Cement Retarder on the Free Fluid Property of Cement Slurry

2020 ◽  
Vol 7 (4) ◽  
pp. 277-280
Author(s):  
Ipeghan Jonathan Otaraku ◽  
John Vitus Anaele
Author(s):  
Camila Aparecida Abelha Rocha ◽  
Cristina Aiex Simão ◽  
Guilherme Chagas Cordeiro ◽  
Romildo Dias Toledo Filho

In recent times, a large reserve of oil and gas in a Pre-Salt zone has been identified in Brazil. In this reserve it is necessary to drill and cement a layer of approximately 2.000 meters of salt rock. In salt rocks, the contact of cement with the rock during the cementing operation can cause the dissolution of the rock and salt can migrate to the cement slurry. Cementitious systems containing salt in their composition have been proposed to minimize the transport of rock salt to the slurry. Considering that the presence of salt can cause changes in the properties of the slurry and compromises the cementing quality. Studies are necessary to understand how the type and concentration of salt can affect the short and long term behavior of the slurry. In this work, the effect of the amount of sodium chloride (NaCl) and potassium chloride (KCl) on the properties of the oil well cement slurry was studied. For this, slurries containing 5%, 10%, 12.5%, 15%, 17.5%, 20% and 36% NaCl by the weight of water (BWOW), and 1%, 3%, 5%, 7%, 10% and 34% KCl (BWOW) were designed. The effect of salt type and content on the rheology, free-fluid and mechanical properties such as compression strength, Young’s modulus, Poisson’s rate and splitting tension strength was investigated. The mechanical properties were evaluated at an age of 8 hours of curing in water at 38°C (100° F) and 60° C (140° F) and 7 days of curing in water at 60° C. The addition of NaCl and KCl resulted in similar behavior in almost all the properties studied. The properties of freshly and early-age, as free-fluid and compression strength, of saline slurry differed in two different mechanisms depending by the salt concentration. For other side, in most cases, the rheological and long-age properties were reduced with an increase in salt content.


2021 ◽  
Author(s):  
Klin Rodrigues ◽  
Auribel Dos Santos ◽  
Hans Oskarsson ◽  
Szymon Jankowski ◽  
Paul Ferm

Abstract Cement retarders available in the market include the traditional lignosulfonates and synthetic copolymers. Commonly, lignosulfonates lack batch to batch reproducibility which hinders formulation consistency. Both lignosulfonates and synthetic polymers will retard the set of cement. However, their chemistry dictates that they also slow down setting time which increases waiting on cement time, thus increasing rig costs. This paper proposes a new smart cement retarder that overcomes these traditional negatives. A number of polymers were designed and synthesized aiming for a chemical able to retard the set of cement while also acting as an accelerator once the cement slurry was in place. These polymers were tested for cement retardation performance using a high-pressure high-temperature (HPHT) consistometer. Static Gel Strength Analyzers (SGSA) measurements were used to determine compressive strength development as well as static gel strength development while curing under downhole temperature and pressure conditions. The new smart cement retarder delivers cement retardation in the 125 - 350°F temperature range and can be used at higher temperatures using a co-retarder. This unique material delivers an accelerated set and attains 500 psi compressive strength very quickly which minimizes waiting on cement time. In addition, this new retarder builds static gel strength rapidly and minimizes gel transition time. Upscaling to field application, the top of the cementing column takes the longest to set. By having this inbuilt accelerator into the system, it allows the top of the column to set as fast as possible gaining the needed compressive strength at the weakest point of the cement column. This should ensure the quality of the cement job in comparison with conventional retarders with significant operating cost savings. The new smart cement retarder will simplify cementing formulations due to its flexibility in dosage range of the retarder within the slurry and improve the quality of the cement jobs. As a result, the proposed smart cement retarder can help with minimizing risk of failures during production and possibly improving safety.


2020 ◽  
Author(s):  
Weiqing Chen ◽  
Salaheldin Mahmoud Elkatatny ◽  
Mobeen Murtaza ◽  
Ahmed Abdulhamid Mahmoud

<p>Well integrity issue is a major concern not only in the Oil and Gas industry but in the geo-storage field. For CO<sub>2</sub> sequestration, in particular, poor quality cement jobs render wells to suffer from possible CO<sub>2</sub> and formation fluid migration issues. In some cases, this migration issue maybe caused by the micro-fracture or micro-channel created during the chemical shrinkage and bulk shrinkage processes. Using some expandable cement system to cope with this issue is a promising way to mitigate this issue. In this study, we are exploring the effect of a kind of micro-MgO based expanding material on some principal properties of CO<sub>2</sub> sequestration well cement.</p><p>In these experiments, a typical cement formulation including various additives was used. Our focus of this pilot study was to investigate the effect of expandable materials on some typical physical-mechanical properties of Portland cement with different concentrations such as 0%, 1.0%, 2.0%, 3% by weight of cement (BWOC). Meanwhile, the pure Class G Portland cement slurry was also investigated as the base experiment. By use of API standard (RP 10B) procedures, those physical-mechanical properties of the cement slurry and set cement have been studied which mainly cover such aspects as rheology, fluid-loss of the cement slurry and uniaxial compressive strength (UCS) through experimental measures.</p><p>The experimental results indicate that UCS decreases gradually with increasing concentrations of the expanding additive. The density, free fluid, and rheology of cement slurry show consistently with the variation of expanding additive concentration. In addition, the fluid loss will increase relative gradually with the increment of expansive additive concentration. By increasing the concentration of expansive additive from 0% (w/w) to 3% (w/w), cement slurry’s rheological properties consistently behaved as the main properties as plastic viscosity (PV), yield point (YP) and gel strength (GS) of 10-seconds and 10-minutes with values varied around 262.33 cP, 5.25 lb/100ft<sup>2</sup>, 6.33 lb/100ft<sup>2</sup>, and 15.26 lb/100ft<sup>2 </sup>respectively. However, the UCS value behaves contrary to the rheology properties, which gradually decreased from 63.33 MPa to 33.54 MPa with the concentration, increased from 0% to 3%. As the UCS test conducted under the curing conditions as 150 ℃, 3000psi and 24hrs, this gradual decrease of UCS maybe because of the delayed hydration characteristics of micro-MgO. Despite this decrease in USC is not positive to prevent any stressed-induced micro-channel, these results are still interesting for further corresponding study and will make the understanding of MgO based expansive additive’s effect on Portland cement matrix more completely. As per other research results and our future experimental study plan, the delayed expansion of micro-MgO hydration will compensate for the chemical and bulk shrinkage issue after enough curing.</p><p>According to the literature review, there are few publications reporting results on micro-MgO based expandable cement systems based on Class G cement.  Through this study, we are expecting to manifest a trend between the concentration of expanding additive and the cement slurry properties. This will provide the technical reference and guidance for further study and application of expanding cement systems in the industry.</p>


2015 ◽  
Vol 814 ◽  
pp. 191-198 ◽  
Author(s):  
Xiu Jian Xia ◽  
Jin Tang Guo ◽  
Shuo Qiong Liu ◽  
Jian Zhou Jin ◽  
Yong Jin Yu ◽  
...  

In this study, a novel polymer retarder DRH-200LG was synthesized to solve the problems of retarding failure, strong dispersivity under high temperature and adverse impact on the strength development of cement stone. The composition of the polymer was confirmed by IR, and its thermal stability was proved by DSC, TG analysis and thermal treatment at 200 °C. Furthermore, the stability and strength development of cement slurry was evaluated by the comparative consistency method and ultrasonic method, respectively. The results show that DRH-200LG has good high temperature-resistance and retarding performance, presenting favourable influence on the stability and strength development of cement slurry. DRH-200LG shows a good application prospect in the cementation of deep & ultra-deep wells. And it has some guiding significance in the research and innovation of a novel polymer used as oil well cement retarder.


2020 ◽  
Author(s):  
K H Jyothiprakash ◽  
Agniv Saha ◽  
Arihant Kumar Patawari ◽  
K. N. Seetharamu

2017 ◽  
pp. 62-67
Author(s):  
V. G. Kuznetsov ◽  
O. A. Makarov

At cementing of casing of oil and gas wells during the process of injecting of cement slurry in the casing column the slurry can move with a higher speed than it’s linear injection speed. A break of continuity of fluid flow occurs, what can lead to poor quality isolation of producing formations and shorten the effective life of the well. We need to find some technical solution to stabilize the linear velocity of the cement slurry in the column. This task can be resolved with an automated control system.


2015 ◽  
Vol 8 (1) ◽  
pp. 149-154 ◽  
Author(s):  
Jun Gu ◽  
Ju Huang ◽  
Su Zhang ◽  
Xinzhong Hu ◽  
Hangxiang Gao ◽  
...  

The purpose of this study is to improve the cementing quality of shale gas well by mud cake solidification, as well as to provide the better annular isolation for its hydraulic fracturing development. Based on the self-established experimental method and API RP 10, the effects of mud cake solidifiers on the shear strength at cement-interlayer interface (SSCFI) were evaluated. After curing for 3, 7, 15 and 30 days, SSCFI was remarkably improved by 629.03%, 222.37%, 241.43% and 273.33%, respectively, compared with the original technology. Moreover, the compatibility among the mud cake solidifier, cement slurry, drilling fluid and prepad fluid meets the safety requirements for cementing operation. An application example in a shale gas well (Yuanye HF-1) was also presented. The high quality ratio of cementing quality is 93.49% of the whole well section, while the unqualified ratio of adjacent well (Yuanba 9) is 84.46%. Moreover, the cementing quality of six gas-bearing reservoirs is high. This paper also discussed the mechanism of mud cake solidification. The reactions among H3AlO42- and H3SiO4- from alkali-dissolved reaction, Na+ and H3SiO4- in the mud cake solidifiers, and Ca2+ and OH- from cement slurry form the natrolite and calcium silicate hydrate (C-S-H) with different silicate-calcium ratio. Based on these, SSCFI and cementing quality were improved.


Sign in / Sign up

Export Citation Format

Share Document