Smart Retarder for Cementing Systems with Accelerated Set and Gel Strength Properties with Potential for Improved Operational Safety

2021 ◽  
Author(s):  
Klin Rodrigues ◽  
Auribel Dos Santos ◽  
Hans Oskarsson ◽  
Szymon Jankowski ◽  
Paul Ferm

Abstract Cement retarders available in the market include the traditional lignosulfonates and synthetic copolymers. Commonly, lignosulfonates lack batch to batch reproducibility which hinders formulation consistency. Both lignosulfonates and synthetic polymers will retard the set of cement. However, their chemistry dictates that they also slow down setting time which increases waiting on cement time, thus increasing rig costs. This paper proposes a new smart cement retarder that overcomes these traditional negatives. A number of polymers were designed and synthesized aiming for a chemical able to retard the set of cement while also acting as an accelerator once the cement slurry was in place. These polymers were tested for cement retardation performance using a high-pressure high-temperature (HPHT) consistometer. Static Gel Strength Analyzers (SGSA) measurements were used to determine compressive strength development as well as static gel strength development while curing under downhole temperature and pressure conditions. The new smart cement retarder delivers cement retardation in the 125 - 350°F temperature range and can be used at higher temperatures using a co-retarder. This unique material delivers an accelerated set and attains 500 psi compressive strength very quickly which minimizes waiting on cement time. In addition, this new retarder builds static gel strength rapidly and minimizes gel transition time. Upscaling to field application, the top of the cementing column takes the longest to set. By having this inbuilt accelerator into the system, it allows the top of the column to set as fast as possible gaining the needed compressive strength at the weakest point of the cement column. This should ensure the quality of the cement job in comparison with conventional retarders with significant operating cost savings. The new smart cement retarder will simplify cementing formulations due to its flexibility in dosage range of the retarder within the slurry and improve the quality of the cement jobs. As a result, the proposed smart cement retarder can help with minimizing risk of failures during production and possibly improving safety.

2015 ◽  
Vol 815 ◽  
pp. 153-157 ◽  
Author(s):  
Antoni ◽  
Rianto Gunawan ◽  
Djwantoro Hardjito

The use of fly ash as an alternative material for cement substitute in concrete mix already a common practice nowadays. However, as a waste material, fly ash varies in quality and condition, as shown by variation of its fineness, specific gravity, Loss on Ignition (LOI) and also on its chemical composition. By measuring the acidity (pH) of the fly ash in water solution, percentage of mass retained on 45 μm sieve, and superplasticizer demand of the fly ash, we can develop a quick estimation of the quality of fly ash. This study aims to investigate a quick method to estimate the quality of fly ash by measuring the physical and chemical pointers, as indicator for its properties and the effect on the setting time and compressive strength of mortar. Fly ash content was varied from 0-70% of the total mass of cementitious materials to make HVFA mortar. Fly ashes were obtained from four power plants in Indonesia. Tests conducted were material characterization, setting time, temperature rise, and compressive strength of mortar at different ages. Different fly ash quality can be shown by the fast pointers; namely pH, superplasticizer demand and % retained on 45 μm sieve. Setting time and strength development were affected by the different properties of fly ash.


2012 ◽  
Vol 450-451 ◽  
pp. 1536-1539
Author(s):  
Cui Ping Nie ◽  
Deng Sheng Ye

Abstract: Usually we pay more attention on how to improve gas well cementing quality in engineering design and field operations, and there are so many studies on cement agents but few researches on cement slurry injection technology. The field practice proved that conventional cementing technology can not ensure the cementing quality especially in gas well and some abnormal pressure wells. Most of the study is concentrated on cement agents and some cementing aspects such as wellbore condition, casing centralization etc. All the factors analysis on cementing quality has pointed out that a combination of good agents and suitable measurements can improve cementing quality effectively. The essential factor in cementing is to enhance the displacement efficiency, but normal hole condition and casing centralization are the fundamental for cementing only. Pulsing cementing is the technology that it can improve the displacement efficiency especially in reservoir well interval, also it can shorten the period from initial to ultimate setting time for cement slurry or improve thickening characteristics, and then to inhibit the potential gas or water channeling. Based on systematically research, aiming at improving in 7″ liner cementing, where there are multi gas reservoirs in long interval in SiChuan special gas field, well was completed with upper 7″ liner and down lower 5″ liner, poor cementing bonding before this time. So we stressed on the study of a downhole low frequency self-excited hydraulic oscillation pulsing cementing drillable device and its application, its successful field utilization proved that it is an innovative tool, and it can improve cementing quality obviously.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Mingting Zhu ◽  
Qingsong Zhang ◽  
Xiao Zhang ◽  
Bing Hui

Cement slurry and cement-sodium silicate slurry are most widely applied for soil grouting reinforcement project. The viscosity change of cement slurry is negligible during grouting period and presumed to be time independent, while the viscosity of cement-sodium silicate slurry increases with time quickly and is presumed to be time dependent. Due to the significant rheological differences between them, the grouting quality and the increasing characteristics of grouting parameters may be different. Those are main factors for grouting design. In this paper, a large-scale 3D grouting simulation device was developed to simulate the surrounding curtain grouting for a tunnel. Two series of surrounding curtain grouting experiments under different initial pressures of 100 kPa, 150 kPa, and 200 kPa were performed. The overload test on the tunnel was performed to evaluate the grouting quality of all surrounding curtain grouting experiments. The results show that the increasing trend of grouting pressure for cement-sodium silicate is similar to its viscosity; the setting time of cement-sodium silicate slurry obtained from the laboratory test is less than that in the practical grouting environment where grout slurry solidifies in soil; the grouting quality of cement-sodium silicate slurry is better than cement slurry, and the grouting quality decreases with initial pressure.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6654
Author(s):  
Jakub Popławski ◽  
Małgorzata Lelusz

Biomass combustion is a significant new source of green energy in the European Union. The adequate utilization of byproducts created during that process is a growing challenge for the energy industry. Biomass fly ash could be used in cement composite production after appropriate activation of that material. This study had been conducted to assess the usefulness of mechanical and physical activation methods (grinding and sieving), as well as activation through the addition of active silica in the form of silica fume, as potential methods with which to activate biomass fly ash. Setting time, compressive strength, water absorption and bulk density tests were performed on fresh and hardened mortar. While all activation methods influenced the compressive strength development of cement mortar with fly ash, sieving of the biomass fly ash enhanced the early compressive strength of cement mortar. The use of active silica in the form of silica fume ensured higher compressive strength results than those of control specimens throughout the entire measurement period.


2019 ◽  
Vol 9 (9) ◽  
pp. 1809 ◽  
Author(s):  
Chen ◽  
Li ◽  
Chaves Figueiredo ◽  
Çopuroğlu ◽  
Veer ◽  
...  

The goal of this study is to investigate the effects of different grades of calcined clay on the extrudability and early-age strength development under ambient conditions. Four mix designs were proposed. Three of them contained high, medium, and low grades of calcined clay, respectively, and one was the reference without calcined clay. In terms of extrudability, an extrusion test method based on the ram extruder was introduced to observe the quality of extruded material filaments, and to determine the extrusion pressure of tested materials at different ages. For evaluating the very early-age strength development, the penetration resistance test, the green strength test, and the ultrasonic pulse velocity test were applied. Furthermore, the mechanical properties of the developed mix designs were determined by the compressive strength test at 1, 7 and 28 days. Finally, the main finding of this study was that increasing the metakaolin content in calcined clay could significantly increase the extrusion pressures and green strength, shorten the initial setting time and enhance the compressive strength at 1, 7, and 28 days.


Crystals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 946
Author(s):  
Oriana Rojas-Duque ◽  
Lina Marcela Espinosa ◽  
Rafael A. Robayo-Salazar ◽  
Ruby Mejía de Gutiérrez

This article reports the production and characterization of a hybrid concrete based on the alkaline activation of a fly ash (FA) of Colombian origin, which was added with 10% Portland cement (OPC) in order to promote the compressive strength development at room temperature. The alkali-activated hybrid cement FA/OPC 90/10 was classified as a low heat reaction cement (type LH), according to American Society of Testing Materials, ASTM C1157; the compressive strength was of 31.56 MPa and of 22.68 MPa (28 days) at the levels of paste and standard mortar, respectively, with an initial setting time of 93.3 min. From this binder, a hybrid concrete was produced and classified as a structural type, with a compressive strength of 23.16 MPa and a flexural modulus of rupture of 5.32 MPa, at 28 days of curing. The global warming potential index (GWP 100), based on life cycle analysis, was 35% lower than the reference concrete based on 100% OPC. Finally, its use was validated in the manufacture of a solid block-type construction element, which reached a compressive strength of 21.9 MPa at 28 days, exceeding by 40.6% the minimum strength value established by the Colombia Technical Standard, NTC 4026 (13 MPa) to be classified as high class structural blocks.


2014 ◽  
Vol 941-944 ◽  
pp. 1441-1444 ◽  
Author(s):  
Jing Fu Zhang ◽  
Kai Liu ◽  
Rui Xue Hou ◽  
Bo Wang ◽  
Jin Long Yang

The compressive strength of oil well cement would be damaged by high temperature in deep oil wells, which was caused by the obvious change of the components and microstructure of cement hydration products. The adaptability of common oil well cement for cementing under higher temperatures was confined by above reasons. Characteristics of development and change of compressive strength of Class G oil well cement were studied under different temperatures by using Static Gel Strength Analyzer and High Temperature-High Pressure curing chamber. The influence law of temperature and silica sands on compressive strength was analyzed. The results showed that the critical temperatures at which the compressive strength begun to decline were about 110°C and 150°C respectively; The compressive strength increased with curing time during the initial period and would reduced after it reached a certain value when temperature exceeded 110°C; For cement with silica sands, the compressive strength development trend was in the shape of two-stage form with increase of curing time within the range of 110~150°C, but for 160~200°C temperature range the development form was in the shape of single stage; The reasonable amounts of silica sands which would be added to cement slurry to enhance the compressive strength of hardening paste were determined to be 30%~40%.


2014 ◽  
Vol 567 ◽  
pp. 417-421 ◽  
Author(s):  
Andri Kusbiantoro ◽  
Norbaizurah Rahman ◽  
Noor Fifinatasha Shahedan

Performance of geopolymer based specimens is significantly affected by internal and external aspects. Curing temperature and air humidity are among the prominent external factors that contribute to the alteration of geopolymer properties. Nevertheless, internal component of geopolymer binder also carries essential effect to the hardened geopolymer binder produced. In this research, the study was concentrated on the elemental composition of source material components and their interrelation to the performance of geopolymer binder produced. Different types of fly ash were used as the source material in this research. Low calcium (class-F) fly ash was combined with high calcium (class-C) fly ash to determine the elemental composition effect, particularly SiO2, Al2O3, and CaO to the geopolymer properties. Analysis using SYSTAT statistical software indicated the importance of oxide composition of source material to the geopolymer specimens produced. Initial setting time of geopolymer paste was also possibly important to the compressive strength of geopolymer specimens produced. Nevertheless, final setting time indicated less importance to the compressive strength development of geopolymer binder.


2021 ◽  
Author(s):  
Fangtong Wang ◽  
Dianqing Li ◽  
Yong Liu

Deep cement mixing is an effective ground stabilization technique to control the ground movement on sand areas, and most of the projects have the problem of seepage. The cement slurry is in a fluid state before the initial setting time, the seepage may affect the diffusion process of cement slurry during this period. A hydro-mechanical approach is proposed to investigate the interaction between the seepage and the strength of cement-stabilized sand. The diffusion of the cement slurry under seepage is considered in this study and the diffusion process is simulated by the finite element method. According to the cement concentration at the end of the diffusion process, the strength of cement-stabilized sand can be predicted by combining an empirical formula. Simulation results examine that the existence of seepage and cracks can enhance the non-uniform diffusion process of cement slurry, and the actual strength distribution of the deep cement-mixed sand is far from the ideal state. This indicates that the influence of seepage on the strength of cement-stabilized sand should be considered in the design of projects.


2021 ◽  
Author(s):  
Thein Zaw Phyoe ◽  
Jose Salazar ◽  
Eduardo Herrera Albuja ◽  
Saurabh Kapoor ◽  
Mohd Waheed Orfali ◽  
...  

Abstract Lost circulation while drilling across vugular or naturally fractured formations is a difficult challenge which will come with high cost for the oil and gas industry. When lost circulation encounter, the drilling company will result in nonproductive time and remedial operational expenses. Most of the fields in UAE are encountering lost circulation problems while drilling across surface sections, which are difficult to control with conventional lost circulation solutions. Newly engineered high-performance lightweight thixotropic proves beneficial to control losses in vugular and natural fractured formations. The main challenge while drilling the surface section in one UAE field is the total loss of returns and flowing formation. This leads to the inability to continue drilling due logistics to continue producing drilling fluid and to keep the well under control and risk of stuck pipe due to poor cuttings removal. Conventional low-density cement slurries have been widely used to cure losses while drilling, but with low effectiveness. A new lost circulation solution that combines lightweight (10.5–lbm/galUS) high-performance cement and a thixotropic agent produce an engineered high-performance lightweight thixotropic lost circulation solution with fast gel strength and improved compressive strength, enabling the plugging of large voids and fractures to recovery wellbore integrity required to continue drilling. Extensive laboratory qualification tests were performed for static gel strength development to confirm the plugging efficiency and compressive strength development. The results were promising with more than 110 lbf/100 ft2 of static gel strength in 10 minutes and compressive strength development of 1,000 psi within 24 hours at low surface temperature. In addition, a transition time (TT) with on-off-on test demonstrated more faster gel strength development was developed when the reduction of the shear rate and regained pumpable with reapplication of shear. In one of the wells, total losses were encountered while drilling across surface section. The lightweight high-performance thixotropic solution was pumped for the first time worldwide, proved that the innovative lost circulation solution was effective in curing the losses, and enabled the operator to continue drilling the section to TD. This case study demonstrates that the engineered system is effective in curing losses and reducing nonproductive time. The unique properties of more faster gel strength and enhanced compressive strength make this system more effective for treating a different types of lost circulation scenarios during drilling (Jadhav and Patil, 2018). New high-performance lightweight thixotropic cement lost circulation solution exhibits strong performance in curing total losses and establishing well integrity with reliability.


Sign in / Sign up

Export Citation Format

Share Document