Essential amino acid metabolism-related molecular classification in triple-negative breast cancer

Epigenomics ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 1247-1268
Author(s):  
Yajie Zhao ◽  
Chunrui Pu ◽  
Dechuang Jiao ◽  
Jiujun Zhu ◽  
Xuhui Guo ◽  
...  

Aim: To develop an approach to characterize and classify triple-negative breast cancer (TNBC) tumors based upon their essential amino acid (EAA) metabolic activity. Methods: We performed bioinformatic analyses of genomic, transcriptomic and clinical data in an integrated cohort of 740 TNBC patients from public databases. Results: Based on EAA metabolism-related gene expression patterns, two TNBC subtypes were identified with distinct prognoses and genomic alterations. Patients exhibiting an upregulated EAA metabolism phenotype were more prone to chemoresistance but also expressed higher levels of immune checkpoint genes and may be better candidates for immune checkpoint inhibitor therapy. Conclusion: Metabolic classification based upon EAA profiles offers a novel biological insight into previously established TNBC subtypes and advances current understanding of TNBC’s metabolic heterogeneity.

2021 ◽  
Author(s):  
Jingyi Liu ◽  
Siyuan Tian ◽  
Yuwei Ling ◽  
Xinyi Zhang ◽  
Yan Li ◽  
...  

Abstract Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer that lacks effective therapeutic targets. Immunotherapy is considered as a novel treatment strategy for TNBC. However, only some patients could benefit from the treatment. Limited studies have comprehensively explored expression patterns and prognostic value of immune checkpoint genes (ICGs) in TNBC. In this study, we downloaded relevant ICGs expression profiles and clinical TNBC data from the Cancer Genome Atlas (TCGA) and the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC) database. The least absolute shrinkage and selection operator (LASSO) Cox regression analysis was employed to develop a multi-gene signature for predicting the prognostic outcome. PDCD1, PDCD1LG2 and KIR3DL2 were identified as hub genes and incorporated into the model. This gene signature could stratify patients into two prognostic subgroups, and unfavorable clinical outcomes were observed in high-risk patients. The predictive performance was assessed by the receiver operating characteristic curves. Moreover, we also analyzed differences in immune status and therapeutic response between both groups. This novel gene signature may be served as a robust prognostic marker, but also an indicator reflecting immunotherapy response.


BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Neslihan Cabioglu ◽  
Semen Onder ◽  
Gizem Oner ◽  
Hüseyin Karatay ◽  
Mustafa Tukenmez ◽  
...  

Abstract Background The expression of immune checkpoint receptors (ICRs) on tumor-infiltrating lymphocytes (TILs) is associated with better response to immunotherapies via immune checkpoint inhibitors. Therefore, we investigated various ICR expressions on TILs in patients with locally advanced triple-negative breast cancer (TNBC) after neoadjuvant chemotherapy (NAC). Methods Expressions of ICRs were examined immunohistochemically in surgical specimens (n = 61) using monoclonal antibodies for PDL-1, PD-1, TIM-3, LAG-3, and CTLA-4. Positivity was defined as staining > 1% on TILs. Results The median age was 49 (24–76) years. The majority of patients were clinically T3–4 (n = 31, 50.8%) and clinically N1–3 (n = 58, 95.1%) before NAC. Of those, 82% were found to have CTLA-4 positivity, whereas PD1, PDL-1, LAG3, and TIM-3 expressions on TILs were 62.3, 50.9, 26.2, and 68.9%. A high expression of CTLA-4 was found to be associated with a better chemotherapy response (OR = 7.94, 95% CI: 0.9–70.12, p = 0.06), whereas TIM-3 positivity was contrarily associated with a worse chemotherapy response (OR = 0.253, 95% CI: 0.066–0.974, p = 0.047) as measured by the MDACC Residual Cancer Burden Index. At a 47-month follow-up, ypN0 (DFS; HR = 0.31, 95% CI: 0.12–0.83, p = 0.02 and DSS; HR = 0.21, 95% CI: 0.07–0.62, p = 0.005) and CTLA-4 high expression on TILs (DFS; HR = 0.38, 95% CI: 0.17–0.85, p = 0.019 and DSS; HR = 0.34, 95% CI: 0.15–0.78, p = 0.01) were found to be associated with improved survival. Conclusions These findings demonstrate that CTLA-4, PD-1, PDL-1, and TIM-3 were highly expressed in TNBC. Based on these high expression patterns, further studies directed towards combined therapies are warranted in advanced TNBC in future.


2018 ◽  
Vol 36 (1) ◽  
Author(s):  
Eliana La Rocca ◽  
Michela Dispinzieri ◽  
Laura Lozza ◽  
Gabriella Mariani ◽  
Serena Di Cosimo ◽  
...  

2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A646-A646
Author(s):  
Elizabeth Stirling ◽  
Adam Wilson ◽  
Katherine Cook ◽  
Alexandra Thomas ◽  
Pierre Triozzi ◽  
...  

BackgroundTriple-negative breast cancer(TNBC) lacks druggable targets and has high metastatic incidence. Immune checkpoint blockades (ICB) are FDA approved for TNBC treatment, but therapeutic response and biomarkers are limited. CD47 is an integral membrane protein overexpressed on cancer cells that alters anti-tumor immunosurveillance, resulting in tumor progression. CD47 is involved in metabolic reprogramming but whether CD47 is a marker of progression and its role in ICB response for TNBC remains unknown.MethodsHuman TNBC biopsies were subjected to immunohistochemical analysis to determine CD47 role in TNBC progression. To determine CD47 impact on tumor burden, a carcinogen-induced TNBC model was performed in female wild type(WT) and cd47 null(cd47-/-) C57Bl/6 mice. To evaluate immune infiltrate signaling, tumors underwent spatial tissue proteomics by multiplexing photo-cleavable antibodies in Formalin-Fixed Paraffin-Embedded samples. An orthotopic EMT-6 murine TNBC model was performed to investigate tumor burden for CD47 monotherapy or in combination with anti-PD-L1 therapy.ResultsHuman matched primary, and metastatic TNBC biopsies increased immunoreactivity to CD47, signifying a potential therapeutic target(n=24). CD47 deficiency in the carcinogen-induced DMBA model decreased tumor incidence, weight, and area compared to WT(n=8/group,*p<0.003). Since CD47 can regulate metabolism, tumors underwent metabolomic analysis. Principal component analysis displayed differentially regulated metabolites between WT and cd47-/- tumors. Decreased carnitine conjugated fatty acids and ketone bodies were observed in cd47-/- tumors compared to WT, suggesting decreased fatty acid availability and/or metabolism(n=9/group,*p<0.05). TNBC cell respiratory measurements validated that targeting CD47 shifted metabolic dependency from fatty acid oxidation to glycolysis(n=3,*p<0.05). Kynurenine/tryptophan pathway metabolites, which catabolize Indoleamine-2,3-dioxygenase(IDO1) and involved in anti-PD-1/PD-L1 resistance, were decreased in cd47-/- tumors compared to WT(n=9/group,*p<0.05). Spatial proteomic analysis determined that cd47-/- tumors had elevated immune cell infiltration(CD45+, CD3+), suggesting CD47 absence enhances tumor immunogenicity and immune-mediated tumor ablation. Multiplexing of photo-cleavable antibodies increased protein expression of immune checkpoint molecules(PD-L1,VISTA,B7-H3,BatF3) and immunosuppressive cell types(CD11b+,Ly6c+) in WT tumors compared to cd47-/-, suggesting CD47 absence limits immunosuppressive signaling(n=16/group,*p<0.05). Since anti-PD-L1 therapies are approved to treat TNBC and WT tumors have PD-L1 upregulation, we examined how targeting CD47 would impact tumor burden of mice receiving anti-PD-L1 therapy. Targeting CD47 or PD-L1 as monotherapy decreased tumor burden; however, in combination it further reduced tumor burden compared to anti-PD-L1 treatment due to increased intratumoral granzyme B secreting cytotoxic T cells(n=4–8/group,*p<0.05).ConclusionsOur data indicates that CD47 may serve as a marker of anti-PD-L1 response, and targeting CD47 enhances immunogenicity and decreases immunosuppressive molecules, sensitizing TNBC tumors to anti-PD-L1 therapy to reduce tumor burden.AcknowledgementsDSP is supported by the NCI R21 (CA249349) and the American Cancer Society Research Scholar Grant (133727-RSG-19-150-01-LIB). ERS is supported by the NIAID Immunology and Pathogenesis T32 Training Grant (T32AI007401).Ethics ApprovalAnimal studies were approved by the Institutional Care and Use Committee, Wake Forest Health Sciences.


2017 ◽  
Vol 67 (8) ◽  
pp. 404-413 ◽  
Author(s):  
Ayaka Katayama ◽  
Tadashi Handa ◽  
Kei Komatsu ◽  
Maria Togo ◽  
Jun Horiguchi ◽  
...  

Author(s):  
Simona Camorani ◽  
Margherita Passariello ◽  
Lisa Agnello ◽  
Silvia Esposito ◽  
Francesca Collina ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Guillermo Prado-Vázquez ◽  
Angelo Gámez-Pozo ◽  
Lucía Trilla-Fuertes ◽  
Jorge M. Arevalillo ◽  
Andrea Zapater-Moros ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document