In silico identification of glycosylphosphatidylinositol-anchored proteins in Paracoccidioides spp.

2021 ◽  
Author(s):  
Relber A Gonçales ◽  
Ayda LM Salamanca ◽  
Luiz RB Júnior ◽  
Kleber SF e Silva ◽  
Elton JR de Vasconcelos ◽  
...  

Aim: To predict glycosylphosphatidylinositol (GPI)-anchored proteins in the genome of Paracoccidioides brasiliensis and Paracoccidioides lutzii. Materials & methods: Five different bioinformatics tools were used for predicting GPI-anchored proteins; we considered as GPI-anchored proteins those detected by at least two in silico analysis methods. We also performed the proteomic analysis of P. brasiliensis cell wall by mass spectrometry. Results: Hundred GPI-anchored proteins were predicted in P. brasiliensis and P. lutzii genomes. A series of 57 proteins were classified in functional categories and 43 conserved proteins were reported with unknown functions. Four proteins identified by in silico analyses were also identified in the cell wall proteome. Conclusion: The data obtained in this study are important resources for future research of GPI-anchored proteins in Paracoccidioides spp. to identify targets for new diagnostic tools, drugs and immunological tests.

2020 ◽  
Vol 21 (3) ◽  
pp. 245-264 ◽  
Author(s):  
Laura C. García-Carnero ◽  
José A. Martínez-Álvarez ◽  
Luis M. Salazar-García ◽  
Nancy E. Lozoya-Pérez ◽  
Sandra E. González-Hernández ◽  
...  

: By being the first point of contact of the fungus with the host, the cell wall plays an important role in the pathogenesis, having many molecules that participate as antigens that are recognized by immune cells, and also that help the fungus to establish infection. The main molecules reported to trigger an immune response are chitin, glucans, oligosaccharides, proteins, melanin, phospholipids, and others, being present in the principal pathogenic fungi with clinical importance worldwide, such as Histoplasma capsulatum, Paracoccidioides brasiliensis, Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Blastomyces dermatitidis, and Sporothrix schenckii. Knowledge and understanding of how the immune system recognizes and responds to fungal antigens are relevant for the future research and development of new diagnostic tools and treatments for the control of mycosis caused by these fungi.


Author(s):  
Relber Aguiar Gonçales ◽  
Rafael Ricci-Azevedo ◽  
Vanessa C S Vieira ◽  
Fabrício F Fernandes ◽  
Sandra M de O Thomaz ◽  
...  

Abstract Background The thermo-dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis. Although poorly studied, paracoccin (PCN) from P. brasiliensis has been shown to harbor lectinic, enzymatic, and immunomodulatory properties that impact disease development. Methods Mutants of P. brasiliensis overexpressing PCN (ov-PCN) were constructed by Agrobacterium tumefaciens-mediated transformation. Ov-PCN strains were analyzed and inoculated intranasally or intravenously to mice. Fungal burden, lung pathology, and survival were monitored to evaluate virulence. Electron microscopy was used to evaluate the size of chito-oligomer particles released by ov-PCN or wild-type strains to growth media. Results ov-PCN strains revealed no differences in cell growth and viability, although PCN overexpression favored cell separation, chitin processing that results in the release of smaller chito-oligomer particles, and enhanced virulence. Our data show that PCN triggers a critical effect in the cell wall biogenesis through the chitinase activity resulting from overexpression of PCN. As such, PCN overexpression aggravates the disease caused by P. brasiliensis. Conclusions Our data is consistent with a model in which PCN modulates the cell wall architecture via its chitinase activity. These findings highlight the potential for exploiting PCN function in future therapeutic approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thyago R. Cardim-Pires ◽  
Ricardo Sant’Anna ◽  
Debora Foguel

AbstractFungal infection is an important health problem in Latin America, and in Brazil in particular. Paracoccidioides (mainly P. brasiliensis and P. lutzii) is responsible for paracoccidioidomycosis, a disease that affects mainly the lungs. The glycoprotein gp43 is involved in fungi adhesion to epithelial cells, which makes this protein an interesting target of study. A specific stretch of 15 amino acids that spans the region 181–195 (named P10) of gp43 is an important epitope of gp43 that is being envisioned as a vaccine candidate. Here we show that synthetic P10 forms typical amyloid aggregates in solution in very short times, a property that could hamper vaccine development. Seeds obtained by fragmentation of P10 fibrils were able to induce the aggregation of P4, but not P23, two other peptides derived from gp43. In silico analysis revealed several regions within the P10 sequence that can form amyloid with steric zipper architecture. Besides, in-silico proteolysis studies with gp43 revealed that aggregation-prone, P10-like peptides could be generated by several proteases, which suggests that P10 could be formed under physiological conditions. Considering our data in the context of a potential vaccine development, we redesigned the sequence of P10, maintaining the antigenic region (HTLAIR), but drastically reducing its aggregation propensity.


2021 ◽  
Author(s):  
Thyago R. Cardim-Pires ◽  
Ricardo Sant’Anna ◽  
Debora Foguel

Abstract Fungal infection is an important health problem in Latin America, and in Brazil in particular. Paracoccidioides (P. brasiliensis and P. lutzii) is responsible for paracoccidioidomycosis, a disease that affects mainly the lungs. The glycoprotein gp43 is involved in fungi adhesion to epithelial cells, which makes this protein an interesting target of study. A specific stretch of 15 amino acids that spans the region 181-195 (named P10) of gp43 is an important epitope of gp43 that is being envisioned as a vaccine candidate. Here we show that synthetic P10 forms typical amyloid aggregates in solution in very short times, a property that could hamper vaccine development. Seeds obtained by fragmentation of P10 fibrils were able to induce the aggregation of P4, but not P23, two other peptides derived from gp43. In silico analysis revealed several regions within the P10 sequence that are capable of forming amyloid with steric zipper architecture. Besides, in-silico proteolysis studies with gp43 revealed that aggregation-prone, P10-like peptides could be generated by several proteases, which suggests that P10 could be formed under physiological conditions. Considering our data in the context of a potential vaccine development, we redesigned the sequence of P10, maintaining the antigenic region (HTLAIR), but drastically reducing its aggregation propensity.


2021 ◽  
Vol 7 (1) ◽  
pp. 21
Author(s):  
Aparecido Ferreira de Souza ◽  
Mariana Vieira Tomazett ◽  
Kleber Santiago Freitas e Silva ◽  
Juliana Santana de Curcio ◽  
Christie Ataides Pereira ◽  
...  

Paracoccidioides spp. are thermally dimorphic fungi that cause paracoccidioidomycosis and can affect both immunocompetent and immunocompromised individuals. The infection can lead to moderate or severe illness and death. Paracoccidioides spp. undergo micronutrients deprivation within the host, including iron. To overcome such cellular stress, this genus of fungi responds in multiple ways, such as the utilization of hemoglobin. A glycosylphosphatidylinositol (GPI)-anchored fungal receptor, Rbt5, has the primary role of acquiring the essential nutrient iron from hemoglobin. Conversely, it is not clear if additional proteins participate in the process of using hemoglobin by the fungus. Therefore, in order to investigate changes in the proteomic level of P. lutzii cell wall, we deprived the fungus of iron and then treated those cells with hemoglobin. Deprived iron cells were used as control. Next, we performed cell wall fractionation and the obtained proteins were submitted to nanoUPLC-MSE. Protein expression levels of the cell wall F1 fraction of cells exposed to hemoglobin were compared with the protein expression of the cell wall F1 fraction of iron-deprived cells. Our results showed that P. lutzii exposure to hemoglobin increased the level of adhesins expression by the fungus, according to the proteomic data. We confirmed that the exposure of the fungus to hemoglobin increased its ability to adhere to macrophages by flow cytometry. In addition, we found that HSP30 of P. lutzii is a novel hemoglobin-binding protein and a possible heme oxygenase. In order to investigate the importance of HSP30 in the Paracoccidioides genus, we developed a Paracoccidioides brasiliensis knockdown strain of HSP30 via Agrobacterium tumefaciens-mediated transformation and demonstrated that silencing this gene decreases the ability of P. brasiliensis to use hemoglobin as a nutrient source. Additional studies are needed to establish HSP30 as a virulence factor, which can support the development of new therapeutic and/or diagnostic approaches.


2018 ◽  
Author(s):  
L.R. Basso ◽  
R.A. Gonçales ◽  
E.J.R Vasconcelos ◽  
T.F. Reis ◽  
P. C. Ruy ◽  
...  

ABSTRACTGlycosylphosphatidylinositol-anchored proteins (GPI-proteins) are widely found in eukaryotic organisms. In fungi, GPI-proteins are thought to be involved in diverse cellular mechanisms such as cell wall biosynthesis and cell wall remodeling, adhesion, antigenicity, and virulence. The conserved structural domains of GPI-protein allow the utilization ofin silicoprediction approach to identify this class of proteins using a genome-wide analysis. We used different previously characterized algorithms to search for genes that encode predicted GPI-proteins in the genome ofP. brasiliensis and P. lutzii, thermal dimorphic fungi that causes paracoccidioidomycosis (PCM). By using these methods, 98 GPI-proteins were found inP. brasiliensiswith orthologs inP. lutzii. A series of 28 GPI-proteins were classified in functional categories (such as glycoside hydrolases, chitin-processing proteins, and proteins involved in the biogenesis of the cell wall). Furthermore, 70 GPI-proteins exhibited homology with hypothetical conserved proteins of unknown function. These data will be an important resource for the future analysis of GPI-proteins inParacoccidioides spp.


Author(s):  
Olívia Basso Rocha ◽  
Lívia do Carmo Silva ◽  
Marcos Antonio Batista de Carvalho Júnior ◽  
Amanda Alves de Oliveira ◽  
Célia Maria de Almeida Soares ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document