Photobiomodulation of inflamed dental pulp stem cells under different nutritional conditions

2021 ◽  
Author(s):  
Seyedeh Sareh Hendi ◽  
Leila Gholami ◽  
Massoud Saidijam ◽  
Roghayeh Mahmoudi ◽  
Ali Asghar Arkian ◽  
...  

Aim: The present study aimed to investigate photobiomodulation's (PBM) effect on inflamed dental pulp stem cells (IDPSCs) under different nutritional conditions. Methods: Cell proliferation and odontogenic differentiation were evaluated using the MTT assay and real-time quantitative reverse transcription PCR, respectively after laser PBM of cells in 5 or 10% fetal bovine serum (FBS) culture conditions. Results: A significant positive effect of laser irradiation on cell proliferation under both nutritional conditions after 24 and 48 h was observed. DMP-1 gene expression increased in the groups with laser irradiation and 5% FBS. Comparison of gene expression levels in the four groups revealed no statistically significant stimulatory effect. The highest gene expression was observed in the non-laser group with 5% FBS. Conclusion: Further studies are required to obtain an irradiation setup to ideally improve inflamed dental pulp stem cells' proliferation and differentiation.

2015 ◽  
Vol 26 (2) ◽  
pp. 93-98 ◽  
Author(s):  
Cristian Muniz Conde ◽  
Flávio Fernando Demarco ◽  
Luciano Casagrande ◽  
José Carlos Alcazar ◽  
Jacques Eduardo Nör ◽  
...  

The aim of this study was to evaluate the influence of the poly-L-lactic acid (PLLA)-based scaffold's pore size on the proliferation and differentiation of dental pulp stem cells (DPSCs). The scaffolds were prepared in pulp chambers of 1-mm-thick tooth slices from third molars using salt crystals (150-250 µm or 251-450 µm) as porogen. DPSC (1x105 cells) were seeded in the scaffolds with different pore sizes, and cultured in 24-well plates. The cell proliferation was evaluated using the WST-1 assay after 3-21 days. Furthermore, RT-PCR was used to assess the differentiation of the DPSCs into odontoblasts, using markers of odontoblastic differentiation (DSPP, DSP-1 and MEPE). RNA from human odontoblasts was used as control. Cell proliferation rate was similar in both scaffolds except at the 14th day period, in which the cells seeded in the scaffolds with larger pores showed higher proliferation (p<0.05). After 21 days DPSCs seeded in both evaluated scaffolds were able of expressing odontoblastic markers DMP-1, DSPP and MEPE. In summary, both scaffolds tested in this study allowed the proliferation and differentiation of DPSCs into odontoblast-like cells.


2019 ◽  
Vol 25 (1) ◽  
pp. 15-21
Author(s):  
Iliescu Alexandru-Andrei ◽  
Gheorghiu Irina-Maria ◽  
Tănase Mihaela ◽  
Iliescu Andrei ◽  
Mitran Loredana ◽  
...  

Abstract The dentine-pulp complex response in deep caries is histological characterized by tertiary formation and mild chronic pulp inflammation. The quiescent primary odontoblasts are reactivated, laying down reactionary tertiary dentine. In more severe carious damage the primary odontoblasts die and reparative tertiary dentine is secreted by odontoblast-like cells, which are differentiated in adult teeth mainly from dental pulp stem cells DPSC. Though associated with reversible pulpitis DPSC still preserve in deep caries the capability of migration, proliferation and differentiation. Some common mechanisms of molecular signals involved in tertiary dentine formation might also explain the balance between inflammation and regeneration of dentine-pulp complex.


2020 ◽  
pp. 1-12
Author(s):  
Pradnya Shahani ◽  
Alka Kaushal ◽  
Girish Waghmare ◽  
Indrani Datta

Owing to their neural crest origin, dental pulp stem cells (DPSCs) are increasingly gaining prominence in treating nervous system disease conditions. However, as per the regulatory bodies [European-Medicines Agency (EMA), Indian-Council of Medical-Research (ICMR)], their biodistribution after transplantation needs to be evaluated for them to be considered for cell-based therapy for clinical trials. There are yet no studies describing the dynamic distribution of human origin DPSCs (hDPSCs) after transplantation in an immunocompetent, physiologically healthy animal model. Here, using near-infrared (NIR)-based whole animal and ex vivo tissue imaging, we assessed the biodistribution of intramuscularly transplanted hDPSCs in immunocompetent healthy Wistar rats. Further validation was done by quantifying gene expression of the human <i>Alu</i> gene in rat tissues. After 24 h of transplantation, an increase in signal intensity and area of signal was observed in the muscle of administration compared to 30 min and 6 h. At hour 24, neither increase in human <i>Alu</i> nor human <i>Ki67</i> gene expression was seen in the rat muscle, thus confirming that the increase in signal area and intensity at hour 24 was not due to proliferation of the transplanted cells. Rather at hour 24, the NIR-signal intensity in bone marrow increased, suggesting that the NIR-tagged DPSCs have started entering into the blood vessels adjacent to the muscle, and the blood vessels being placed just beneath the subcutaneous layer might be responsible for an increase in signal intensity. Signal intensity increased distinctly in all organs at this timepoint, confirming that the cells entered the bloodstream by hour 24. Lung entrapment of DPSCs was not observed, since signal intensity was least in lungs as compared to the site of injection. Cells were retained for up to 28 days at the site of injection. These findings lay the basis to design the dosage for intramuscular delivery of hDPSCs for degenerative disease models and for future clinical trials.


2013 ◽  
Vol 37 (2) ◽  
pp. 126-136 ◽  
Author(s):  
Mohammad Mahboob Kanafi ◽  
Rajarshi Pal ◽  
Pawan Kumar Gupta

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nessma Sultan ◽  
Laila E. Amin ◽  
Ahmed R. Zaher ◽  
Mohammed E. Grawish ◽  
Ben A. Scheven

AbstractEvidence indicates that dental pulp stem cells (DPSC) secrete neurotrophic factors which play an important role in neurogenesis, neural maintenance and repair. In this study we investigated the trophic potential of DPSC-derived conditioned medium (CM) to protect and regenerate isolated primary trigeminal ganglion neuronal cells (TGNC). DPSC and TGNC were harvested by enzymatic digestion from Wister-Hann rats. CM was collected from 72 h serum-free DPSC cultures and neurotrophic factors; nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and glial cell line-derived neurotrophic factor (GDNF) were analysed by specific enzyme-linked immunosorbent assays (ELISAs). Primary co-cultures of DPSC and TGNC were established to evaluate the paracrine effects of DPSC. In comparison, NGF was used to evaluate its neurotrophic and neuritogenic effect on TGNC. Immunocytochemistry was performed to detect the neuronal-markers; neuronal nuclei (NeuN), microtubule-associated protein-2 (MAP-2) and βIII-tubulin. Quantitative real time polymerase chain reaction (qRT-PCR) was used to analyse neuronal-associated gene expression of NeuN, MAP-2, βIII-tubulin in addition to growth-associated protein-43 (GAP-43), Synapsin-I and thermo-sensitive transient receptor potential vanilloid channel-1 (TRPV1). DPSC-CM contained significant levels of NGF, BDNF, NT-3 and GDNF. DPSC and DPSC-CM significantly enhanced TGNC survival with extensive neurite outgrowth and branching as evaluated by immunocytochemistry of neuronal markers. DPSC-CM was more effective in stimulating TGNC survival than co-cultures or NGF treated culture. In comparison to controls, DPSC-CM significantly upregulated gene expression of several neuronal markers as well as TRPV1. This study demonstrated that DPSC-derived factors promoted survival and regeneration of isolated TGNC and may be considered as cell-free therapy for TG nerve repair.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Lina M. Escobar ◽  
Zita Bendahan ◽  
Andrea Bayona ◽  
Jaime E. Castellanos ◽  
María-Clara González

Introduction. The aim of the present study was to determine the effects of vitamins D and E on the proliferation, morphology, and differentiation of human dental pulp stem cells (hDPSCs). Methods. In this in vitro experimental study, hDPSCs were isolated, characterized, and treated with vitamins D and E, individually and in combination, utilizing different doses and treatment periods. Changes in morphology and cell proliferation were evaluated using light microscopy and the resazurin assay, respectively. Osteoblast differentiation was evaluated with alizarin red S staining and expression of RUNX2, Osterix, and Osteocalcin genes using real-time RT-PCR. Results. Compared with untreated cells, the number of cells significantly reduced following treatment with vitamin D (49%), vitamin E (35%), and vitamins D + E (61%) after 144 h. Compared with cell cultures treated with individual vitamins, cells treated with vitamins D + E demonstrated decreased cell confluence, with more extensive and flatter cytoplasm that initiated the formation of a significantly large number of calcified nodules after 7 days of treatment. After 14 days, treatment with vitamins D, E, and D + E increased the transcription of RUNX2, Osterix, and Osteocalcin genes. Conclusions. Vitamins D and E induced osteoblastic differentiation of hDPSCs, as evidenced by the decrease in cell proliferation, morphological changes, and the formation of calcified nodules, increasing the expression of differentiation genes. Concurrent treatment with vitamins D + E induces a synergistic effect in differentiation toward an osteoblastic lineage.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 642 ◽  
Author(s):  
Sang Yun Jeong ◽  
Soonchul Lee ◽  
Woo Hee Choi ◽  
Joo Hyun Jee ◽  
Hyung-Ryong Kim ◽  
...  

We developed a novel dentin-pulp-like organoid. It has both stem-cell and odontoblast characteristics using a mesenchymal cell lineage of human dental-pulp stem cells (hDPSCs). The mixture of hDPSCs and Matrigel was transferred into the maintenance medium (MM) and divided into four different groups according to how long they were maintained in the odontogenic differentiation medium (ODM). All organoids were harvested at 21 days and analyzed to find the optimal differentiation condition. To assess the re-fabrication of dentin-pulp-like organoid, after dissociation of the organoids, it was successfully regenerated. Additionally, its biological activity was confirmed by analyzing changes of relevant gene expression and performing a histology analysis after adding Biodentine® into the ODM. The organoid was cultured for 11 days in the ODM (ODM 11) had the most features of both stem cells and differentiated cells (odontoblasts) as confirmed by relevant gene expression and histology analyses. Micro-computed tomography and an electron microscope also showed mineralization and odontoblastic differentiation. Finally, ODM 11 demonstrated a biologically active response to Biodentine® treatment. In conclusion, for the first time, we report the fabrication of a dentin-pulp-like organoid using mesenchymal stem cells. This organoid has potential as a future therapeutic strategy for tooth regeneration.


Sign in / Sign up

Export Citation Format

Share Document