scholarly journals Early postmortem metabolism and protease activation in contrasting bovine muscles

2021 ◽  
Author(s):  
Tracy Scheffler ◽  
Patricia Maloso Ramos ◽  
Lindsey C Bell ◽  
Mayka R. Pedrao

Muscle to meat conversion is influenced by muscle properties and metabolism. Fiber type profile impacts glycolytic capacity as well as protein turnover rate in vivo. Our objective was to investigate protease content and activation during the early postmortem period using muscles with known divergent metabolism. Samples from longissimus lumborum (LL) and diaphragm (Dia) were taken from predominantly Angus steer carcasses (n = 6) at 1, 3, and 24h postmortem and frozen. Myosin heavy chain (MyHC) isoforms, ATP, glycogen, glucose, glucose-6-phosphate (G6P), and lactate concentrations were determined. Procaspase-3, calpain-1, calpastatin, desmin, and troponin-T were assessed by immunodetection. Fixed effects of muscle (m), time postmortem (t) and the interaction (m × t) were investigated, and least square means were separated by Bonferroni test at 5% significance. Muscles showed contrasting MyHC profiles, with LL represented primarily by IIx and IIa isoforms (~ 88%) whereas Dia contained mostly (80%) type I isoform. Glycogen degradation was more pronounced in LL and coincided with more rapid accumulation of glucose and lactate (P < 0.01). Procaspase-3 content was influenced by muscle (m: P < 0.01), being greater in Dia. Fragments indicating activation of procaspase-3 postmortem were not detected. Calpain-1 autolysis and intact calpastatin (135 kDa) content were influenced by muscle and time (m × t: P < 0.01 and P < 0.01, respectively). Calpastatin fragmentation postmortem was not associated with greater procaspase-3 content. Fast glycolytic LL displayed faster protease activation and greater proteolysis during the first 24h postmortem. 

2003 ◽  
Vol 284 (3) ◽  
pp. E541-E548 ◽  
Author(s):  
Hilary Ann Petersen ◽  
Patrick T. Fueger ◽  
Deanna P. Bracy ◽  
David H. Wasserman ◽  
Amy E. Halseth

The aim of this study was to determine barriers limiting muscle glucose uptake (MGU) during increased glucose flux created by raising blood glucose in the presence of fixed insulin. The determinants of the maximal velocity ( V max) of MGU in muscles of different fiber types were defined. Conscious rats were studied during a 4 mU · kg−1 · min−1insulin clamp with plasma glucose at 2.5, 5.5, and 8.5 mM. [U-14C]mannitol and 3- O-methyl-[3H]glucose ([3H]MG) were infused to steady-state levels ( t = −180 to 0 min). These isotope infusions were continued from 0 to 40 min with the addition of a 2-deoxy-[3H]glucose ([3H]DG) infusion. Muscles were excised at t = 40 min. Glucose metabolic index (Rg) was calculated from muscle-phosphorylated [3H]DG. [U-14C]mannitol was used to determine extracellular (EC) H2O. Glucose at the outer ([G]om) and inner ([G]im) sarcolemmal surfaces was determined by the ratio of [3H]MG in intracellular to EC H2O and muscle glucose. Rg was comparable at the two higher glucose concentrations, suggesting that rates of uptake near V max were reached. In summary, by defining the relationship of arterial glucose to [G]om and [G]im in the presence of fixed hyperinsulinemia, it is concluded that 1) V max for MGU is limited by extracellular and intracellular barriers in type I fibers, as the sarcolemma is freely permeable to glucose; 2) V max is limited in muscles with predominantly type IIb fibers by extracellular resistance and transport resistance; and 3) limits to Rg are determined by resistance at multiple steps and are better defined by distributed control rather than by a single rate-limiting step.


1994 ◽  
Vol 76 (4) ◽  
pp. 1636-1642 ◽  
Author(s):  
M. L. Dubelaar ◽  
J. F. Glatz ◽  
Y. F. De Jong ◽  
F. H. Van der Veen ◽  
W. C. Hulsmann

In the first part of this study, in four dogs the left latissimus dorsi was equipped to perform in vivo contraction measurements and the right latissimus dorsi served as control. After a control period, the dogs received L-carnitine intravenously for 8 wk. We found that carnitine caused the percentage of type I fibers to increase from 30 to 55% in the left latissimus dorsi but no change in the right latissimus dorsi. In the left latissimus dorsi, the contraction speed (percentage ripple) decreased from 75 to 30% and cytochrome-c oxidase activity increased 1.6-fold. No changes occurred in the right latissimus dorsi. To verify these observations, we performed a second study with placebo control for 8 wk, and only the left latissimus dorsi was subjected to weekly electrical stimulation. In the carnitine-treated dogs, the stimulated muscle showed an increase in the percentage of type I fibers from 16 to 35% and the ripple decreased from 92 to 77%. These measures did not change in the placebo-treated dogs. We concluded that weekly short-term stimulation does not lead to a change in fiber type; however, carnitine combined with minimal stimulation of the muscle leads to a significant shift in muscle fiber type composition toward a muscle with an increased content of type I fibers.


1983 ◽  
Vol 245 (2) ◽  
pp. H368-H374 ◽  
Author(s):  
I. H. Sarelius ◽  
L. C. Maxwell ◽  
S. D. Gray ◽  
B. R. Duling

We determined muscle fiber type and capillarity in cremaster muscle samples from rats and hamsters of different ages. Histochemical estimation of oxidative capacity was made from the activity of either nicotinamide dinucleotide tetrazolium reductase (NADH-TR) or succinic dehydrogenase (SDH), and fibers were termed fast or slow from myofibrillar ATPase activity. Fibers were classified as type I (low ATPase, high NADH-TR/SDH), type IIa (high ATPase, high SDH/NADH-TR), type IIb (high ATPase, low SDH/NADH-TR), or type IIc (no acid reversal of ATPase, high NADH-TR). Type IIb fibers accounted for 60-80% of the muscle area in both species at all ages. The principal change with maturation was muscle fiber hypertrophy. Mean cross-sectional fiber area increased from 488 +/- 70 (SE) and 453 +/- 19 micron2 in young hamsters and rats, respectively, to 1,255 +/- 99 and 1,540 +/- 101 micron2 in adults. Capillary density (no. of capillaries/mm2 tissue) paralleled fiber hypertrophy; it decreased significantly with maturation from 684 +/- 60 (SE) to 228 +/- 26/mm2 in hamsters and from 341 +/- 15 to 213 +/- 15/mm2 in rats. In vitro estimates of capillary density are compared with previously obtained in vivo data (31), and sources of error are identified. We conclude that reported differences in microvascular function in the cremaster muscle in vivo during maturation or between species cannot be ascribed to changes in muscle composition.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Haniel A Araujo ◽  
Leonardo Y Tanaka ◽  
Gustavo K Hironaka ◽  
Thais L Araujo ◽  
Celso K Takimura ◽  
...  

INTRODUCTION: Vascular remodeling orchestrates a complex network of signaling pathways responsible for pathological changes in many vascular diseases such as atherosclerosis. We investigated the role of endoplasmic reticulum chaperone Protein Disulfide Isomerase (PDI) and the extracellular PDI (ecPDI) pool in vascular caliber and architecture during vascular repair and remodeling after injury (AI). METHODS AND RESULTS: After rabbit iliac artery balloon injury, PDI is markedly increased at mRNA and protein levels (25-fold vs. basal 14 days AI), with increase in both intracellular and ecPDI. Silencing PDI by siRNA in vitro induced ER stress markers upregulation and apoptosis (assessed by TUNEL assay). PDI knockdown also upregulated proliferation marker PCNA and decreased differentiation marker calponin-C. Furthermore, ecPDI inhibition prevents injury-increased hydrogen peroxide generation and decreases arterial nitrate (NO3-) level. EcPDI neutralization in vivo with PDIAb-containing perivascular gel from days 12-14AI promoted 25% decrease in vascular caliber at arteriography and similar decreases in total vessel circumference at optical coherence tomography, without changing neointima, indicating increased constrictive remodeling. EcPDI neutralization promoted striking changes in collagen, with switch from circumferential to radial fiber orientation towards a more rigid fiber type. Collagen type I and III were decreased after ecPDI inhibition in arteries 14 days AI. Cytoskeleton architecture was also disrupted, with loss of stress fiber coherent organization and switch from thin to medium-thickness actin fibers. In human coronary atheromas, PDI expression inversely correlated with constrictive remodeling. There was decreased PDI expression in media and intima from plaques exhibiting constrictive remodeling and, conversely, enhanced PDI expression in media of plaques depicting outward remodeling. CONCLUSIONS: Thus, PDI is highly upregulated after injury and reshapes matrix and cytoskeleton architecture to support an anticonstrictive remodeling effect. Such findings suggest an important role for PDI in lumen maintenance during vascular remodeling.


2015 ◽  
Vol 309 (2) ◽  
pp. R128-R137 ◽  
Author(s):  
Hiroaki Eshima ◽  
David C. Poole ◽  
Yutaka Kano

In Type 1 diabetes, skeletal muscle resting intracellular Ca2+ concentration ([Ca2+]i) homeostasis is impaired following muscle contractions. It is unclear to what degree this behavior is contingent upon fiber type and muscle oxygenation conditions. We tested the hypotheses that: 1) the rise in resting [Ca2+]i evident in diabetic rat slow-twitch (type I) muscle would be exacerbated in fast-twitch (type II) muscle following contraction; and 2) these elevated [Ca2+]i levels would relate to derangement of microvascular partial pressure of oxygen (PmvO2) rather than sarcoplasmic reticulum dysfunction per se. Adult male Wistar rats were divided randomly into diabetic (DIA: streptozotocin ip) and healthy (CONT) groups. Four weeks later extensor digitorum longus (EDL, predominately type II fibers) and soleus (SOL, predominately type I fibers) muscle contractions were elicited by continuous electrical stimulation (120 s, 100 Hz). Ca2+ imaging was achieved using fura 2-AM in vivo (i.e., circulation intact). DIA increased fatigability in EDL ( P < 0.05) but not SOL. In recovery, SOL [Ca2+]i either returned to its resting baseline within 150 s (CONT 1.00 ± 0.02 at 600 s) or was not elevated in recovery at all (DIA 1.03 ± 0.02 at 600 s, P > 0.05). In recovery, EDL CONT [Ca2+]i also decreased to values not different from baseline (1.06 ± 0.01, P > 0.05) at 600 s. In marked contrast, EDL DIA [Ca2+]i remained elevated for the entire recovery period (i.e., 1.23 ± 0.03 at 600 s, P < 0.05). The inability of [Ca2+]i to return to baseline in EDL DIA was not associated with any reduction of SR Ca2+-ATPase (SERCA) 1 or SERCA2 protein levels (both increased 30–40%, P < 0.05). However, PmvO2 recovery kinetics were markedly slowed in EDL such that mean PmvO2 was substantially depressed (CONT 27.9 ± 2.0 vs. DIA 18.4 ± 2.0 Torr, P < 0.05), and this behavior was associated with the elevated [Ca2+]i. In contrast, this was not the case for SOL ( P > 0.05) in that neither [Ca2+]i nor PmvO2 were deranged in recovery with DIA. In conclusion, recovery of [Ca2+]i homeostasis is impaired in diabetic rat fast-twitch but not slow-twitch muscle in concert with reduced PmvO2 pressures.


1992 ◽  
Vol 72 (3) ◽  
pp. 828-835 ◽  
Author(s):  
C. M. Lucas ◽  
M. G. Havenith ◽  
F. H. van der Veen ◽  
J. Habets ◽  
T. van der Nagel ◽  
...  

To study functional, structural, and biochemical adaptations to electrical stimulation of striated muscle in a large animal, the canine latissimus dorsi (LD) muscle was conditioned continuously for 24 wk with an increasing number of pulse bursts (burst duration 250 ms, burst frequency 30 Hz). Force measurements in vivo after 12 wk showed a significant decrease in the ripple, the ratio of interstimulus to peak force amplitude, from 0.94 +/- 0.03 to 0.13 +/- 0.08 (SE; n = 8, P less than 0.05), indicating reduction in contractile speed. Also the steep part of the force-frequency relation shifted to lower frequencies. A significant change in fiber-type composition was seen with both enzyme- and immunohistochemistry, manifested by an increase of type I fibers from 29.5 +/- 2.9 to 83 +/- 8% (SE; n = 8, P less than 0.05). During this period a transient rise in the number of type IIc/Ic fibers (from 3 to 10%) was seen. In the stimulated muscle, capillary-to-fiber ratio increased from 1.9 +/- 0.4 to 2.7 +/- 0.1 (P less than 0.05). A significant increase in mitochondrial volume was also seen, especially in the peripheral part of the fiber. Both creatine kinase and lactate dehydrogenase revealed a significant decline in activity within 12 wk. At the same time a shift in lactate dehydrogenase-isozyme pattern was observed toward the cardiac composition. No additional changes occurred after 12 wk of stimulation, indicating that conversion of the canine LD muscle was complete within this period.


2019 ◽  
Vol 3 (2) ◽  
Author(s):  
P. Ramos ◽  
L. Bell ◽  
M. Pedrao ◽  
T. Scheffler

ObjectivesThe conversion of muscle to meat is largely controlled by postmortem energy metabolism and pH decline. These biochemical changes influence activity of enzymes implicated in proteolysis and meat tenderization. Therefore, our objective was to investigate pH decline, muscle energy metabolism, and protease activation in functionally distinct bovine muscles.Materials and MethodsSteers (n = 6) were harvested at approximately 18.5 mo and 630 kg live weight. Samples from the longissimus lumborum (LL) and diaphragm (Dia) were taken at 1, 3, and 24h postmortem, immediately frozen using liquid nitrogen, and stored in ultra-freezer until analysis. Muscle pH was obtained using a pH meter at the same time points. Myosin heavy chain composition (I, IIa, and IIx) was determined using gel electrophoresis. Substrate (residual glycogen), as well as glycolytic metabolites, glucose, glucose-6-phosphate, and lactate, were quantified by enzymatic methods; muscle ATP at 1 and 3h was also determined. Western blotting was used to evaluate protease activation (calpain-1 and caspase-3). Data were analyzed using a randomized block design, with slaughter date as block. Animal within slaughter date was considered as random effect and fixed effects of muscle, time, and the interaction tested. Time was considered a repeated measure.ResultsDiaphragm contained a greater percentage of slow myosin heavy chain compared to LL (80% vs. 12%, respectively). Consistent with fiber type, LL contained greater glycogen than Dia at 1h (P < 0.05), but not at subsequent times postmortem. Overall, a greater decline in glycogen occurred in LL. Accordingly, lactate concentration increased markedly in LL postmortem and to a lesser extent in Dia (interaction effect; P < 0.01). Although muscles exhibited similar lactate content at 1h, at 24h the LL showed elevated lactate relative to Dia (88 vs. 53 µmol/g tissue, respectively). Accumulation of glucose and glucose-6-phosphate were affected by muscle (P < 0.01) and time (P < 0.01), with greater final content in LL compared to Dia. Muscles exhibited different patterns of postmortem pH decline (muscle × time, P < 0.0001). Initially, pH of LL was higher than Dia (P < 0.01) and remained different at 3h (P < 0.05); but by 24h, pH values were similar. Content of ATP was influenced by muscle (P < 0.01) and time (P < 0.01). Initial ATP was greater (P < 0.01) in LL than in Dia and remained greater (P = 0.002) at 3h postmortem. From 1 to 24h, the pattern of calpain autolysis differed between muscles (interaction effect; P = 0.01). Calpain-1 autolysis was similar at all times in Dia, whereas autolysis increased in LL from 3h to 24h postmortem. Caspase-3 was identified by one band (32 kDa) that represents the zymogen (procaspase-3). Procaspase-3 content is affected by muscle (P < 0.01), with Dia containing greater content than LL.ConclusionAlthough the Dia is considered a slow muscle, it exhibited a more rapid pH decline and lower ATP levels than LL early postmortem. These parameters were expected to coincide with more rapid calpain-1 autolysis in Dia, but this was not the case. Further work is necessary to understand the interaction between pH decline, muscle type, and postmortem proteolysis.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Brenda Janice Sánchez ◽  
Anne-Marie K. Tremblay ◽  
Jean-Philippe Leduc-Gaudet ◽  
Derek T. Hall ◽  
Erzsebet Kovacs ◽  
...  

Abstract The master posttranscriptional regulator HuR promotes muscle fiber formation in cultured muscle cells. However, its impact on muscle physiology and function in vivo is still unclear. Here, we show that muscle-specific HuR knockout (muHuR-KO) mice have high exercise endurance that is associated with enhanced oxygen consumption and carbon dioxide production. muHuR-KO mice exhibit a significant increase in the proportion of oxidative type I fibers in several skeletal muscles. HuR mediates these effects by collaborating with the mRNA decay factor KSRP to destabilize the PGC-1α mRNA. The type I fiber-enriched phenotype of muHuR-KO mice protects against cancer cachexia-induced muscle loss. Therefore, our study uncovers that under normal conditions HuR modulates muscle fiber type specification by promoting the formation of glycolytic type II fibers. We also provide a proof-of-principle that HuR expression can be targeted therapeutically in skeletal muscles to combat cancer-induced muscle wasting.


2001 ◽  
Vol 90 (3) ◽  
pp. 865-872 ◽  
Author(s):  
Constantinos N. Maganaris ◽  
Vasilios Baltzopoulos ◽  
D. Ball ◽  
Anthony J. Sargeant

In this study, we estimated the specific tensions of soleus (Sol) and tibialis anterior (TA) muscles in six men. Joint moments were measured during maximum voluntary contraction (MVC) and during electrical stimulation. Moment arm lengths and muscle volumes were measured using magnetic resonance imaging, and pennation angles and fascicular lengths were measured using ultrasonography. Tendon and muscle forces were modeled. Two approaches were followed to estimate specific tension. First, muscle moments during electrical stimulation and moment arm lengths, fascicular lengths, and pennation angles during MVC were used ( data set A). Then, MVC moments, moment arm lengths at rest, and cadaveric fascicular lengths and pennation angles were used ( data set B). The use of data set B yielded the unrealistic specific tension estimates of 104 kN/m2 in Sol and 658 kN/m2 in TA. The use of data set A, however, yielded values of 150 and 155 kN/m2 in Sol and TA, respectively, which agree with in vitro results from fiber type I-predominant muscles. In fact, both Sol and TA are such muscles. Our study demonstrates the feasibility of accurate in vivo estimates of human muscle intrinsic strength.


2018 ◽  
Author(s):  
Justin G. Boyer ◽  
Taejeong Song ◽  
Donghoon Lee ◽  
Xing Fu ◽  
Sakthivel Sadayappan ◽  
...  

AbstractMitogen-activated protein kinases (MAPK) are conserved protein kinases that regulate a diverse array of cellular activities. Stress or mitogenic signals activate three primary branches of the greater MAPK cascade, each of which consists of a phosphorylation-dependent array of successively acting kinases. The extracellular signal-regulated kinase 1/2 (ERK1/2) branch is regulated by growth factory signaling at the cell membrane, leading to phosphorylation of the dual-specificity kinase MEK1, which is dedicated to ERK1/2 phosphorylation. Previous studies have established a link between MAPK activation and endurance exercise, but whether a single MAPK is responsible for establishing muscle metabolic fate is unclear. Using mouse genetics we observed that muscle-specific expression of a constitutively active MEK1 promotes greater ERK1/2 signaling that mediates fiber-type switching in mouse skeletal muscle to a slow, oxidative phenotype with type I myosin heavy chain expression. Induced expression of the activated MEK1 mutant using either a MyoD-Cre or myosin light chain-Cre strategy equally increased the number of type I fibers in skeletal muscle with significantly reduced size compared to controls. Moreover, activation of MEK1 in mature myofibers of an adult mouse using a transgene containing a tamoxifen inducible MerCreMer cDNA under the control of a skeletal α-actin promoter produced a similar phenotype of switching towards a slow-oxidative program. Physiologic assessment of mice with greater skeletal muscle slow-oxidative fibers showed enhanced metabolic activity and oxygen consumption with greater fatigue resistance of individual muscles. In summary, these results show that sustained MEK1-ERK1/2 activity in skeletal muscle produces a fast-to-slow fiber-type switch, suggesting that modulation of this signaling pathway may represent a therapeutic approach to enhance the long-term metabolic effectiveness of musclein vivo.


Sign in / Sign up

Export Citation Format

Share Document