scholarly journals Effect of Nef-Deleted Pseudotyped HIV Virions Bearing an Enhanced Green Fluorescent Protein (EGFP) Gene in the env on HIV-Sensitive Transformed T Cells

2003 ◽  
Vol 24 (2) ◽  
pp. 59-69 ◽  
Author(s):  
Eiji SHINYA ◽  
Chizuno HIDAKA ◽  
Atsuko OWAKI ◽  
Masami SHIMIZU ◽  
Yieng LI ◽  
...  
2021 ◽  
Vol 33 (2) ◽  
pp. 180
Author(s):  
Q. Xu ◽  
D. J. Milner ◽  
M. B. Wheeler

The goal of our project is to produce porcine adipose-derived stem cells (ASCs) stably expressing enhanced green fluorescent protein (eGFP) by using the clustered regularly interspaced short palindromic repeats (CRIPSR) technique. Fluorescent stem cells can facilitate the tracing and visualisation of stem cell migration, fusion, and participation in tissue regeneration after stem cell injection therapy, and represent a useful tool for tissue engineering research. The production of stem cells containing eGFP from ASCs using the CRISPR gene editing technique is able to reduce the time and labour requirement necessary for harvesting fluorescent cells from transgenic pigs. To generate fluorescent, edited cells, we utilised the ROSA 26 locus of pigs for insertion of the eGFP gene by homology-directed repair of Cas9-cleaved DNA at the ROSA 26 locus. The critical steps of producing stem cells expressing eGFP are (1) cloning of guide oligos into a Cas9 cutting vector and producing a repair template vector to insert GFP; (2) transfecting porcine stem cells with CRISPR plasmids; (3) cell sorting with flow cytometry to isolate colonies expressing GFP. A Rosa 26 Cas9-gRNA cutting vector was produced by cloning a guide RNA sequence into the vector backbone of plasmid pX458-GFP, and the donor vector was produced by the combination of the eGFP gene flanked with ROSA 26 genomic DNA inserted into plasmid pUC57. To isolate cells edited to contain the eGFP gene inserted into the ROSA-26 locus, we transfected 250,000 cells with a 1:1 mass mixture of Cas9-gRNA and eGFP repair plasmid using Lipofectamine STEM reagent (Invitrogen) in three trials. GFP+ cells were isolated by fluorescence-activated cell sorting, plated in 96-well plates, and monitored for colony growth and GFP expression. These trials produced an average of ∼70 colonies from sorting, and ∼1% GFP+ colonies. As pX458 drives expression of GFP as a marker for transfection, we hypothesised that we would potentially isolate more GFP+ edited colonies if we utilised a Cas9-gRNA cutting vector expressing mCherry and sorted for cells expressing both mCherry and GFP. This would allow enrichment of edited cells expressing GFP early after transfection, without interference of cells expressing GFP from the Cas9-gRNA vector alone. Utilising this method, we again obtained an average of ∼70 colonies from sorting, and 3% GFP+ colonies. Results were subjected to Student’s t-test. The comparisons were colonies/cell sorted and GFP+ colonies/cell sorted. All data were expressed as quadratic means+mean SE. When we compared groups, no differences were found for colonies/cell sorted: P=0.53 (1.11 E-03±9.16E-04 and 5.39 E-04±3.77 E-04, respectively, for green-green or red-green) and for GFP+ colonies/cell sorted: P=0.44 (1.94 E-05±2.15E-05 and 4.59 E-05±2.46 E-05, respectively, for green-green or red-green). In conclusion, our attempts to isolate ASC edited to express GFP have been successful, and our initial results suggest that utilising a dual fluorescent label sorting strategy does not enhance the number of GFP+ ASC colonies isolated. Future studies will verify that our GFP+ ASC retain normal stem cell properties.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Zhongling Gong

In this study, the actin A3 promoter was inserted into piggyBac and constructed into pBacA3, which was inserted into piggyBac. The promoter was composed of the promoter and nerve-specific 3xP3 promoter, the enhanced green fluorescent protein (EGFP) gene and the SV40 polyadenylation recognition sequence. EGFP and pBac3xP3 EGFP transposon were injected into the early fertilized eggs of Spodoptera litura to detect whether they were expressed. The results showed that both vectors could be expressed in moth eggs, and positive individuals were obtained. The results showed that the expression rate of pBacA3 EGFP was higher than that of pBac3xP3 EGFP, and the proportion of EGFP in hatching larvae was higher than that in the latter. The results showed that pBacA3 EGFP was more suitable for Spodoptera litura Transposable carrier. In vitro transient expression of the transgenic vector of Spodoptera litura was not only the first step necessary to successfully carry out the transgenic gene of Spodoptera litura, but also itself can be applied to the study of gene function, which laid the foundation for the genome research of Spodoptera litura.


2006 ◽  
Vol 14 (21) ◽  
pp. 9815 ◽  
Author(s):  
Alberto Diaspro ◽  
Silke Krol ◽  
Barbara Campanini ◽  
Fabio Cannone ◽  
Giuseppe Chirico

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Yingyun Cai ◽  
Shuiqing Yu ◽  
Ying Fang ◽  
Laura Bollinger ◽  
Yanhua Li ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b’, is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Sign in / Sign up

Export Citation Format

Share Document