scholarly journals THE HH34 JET/COUNTERJET SYSTEM AT 1.5 AND 4.5μm

2019 ◽  
Vol 55 (1) ◽  
pp. 117-123
Author(s):  
A. C. Raga ◽  
B. Reipurth ◽  
A. Noriega-Crespo

We present a (previously unpublished) 1.5µm archival HST image of the HH 34 Herbig-Haro jet, in which the northern counterjet is seen at an unprecedented angular resolution of ≈ 0.1′′ (this counterjet had only been imaged previously at lower resolution with Spitzer). The jet/counterjet structure observed in this image shows evidence of low-amplitude, point-symmetric deviations from the outflow axis, indicating the presence of a precession in the ejection direction. We use the ratios between the 1.5 and 4.5 µm intensities of the emitting knots (from the HST image and from a previously published 4.5 µm Spitzer image) to obtain an estimate of the spatial dependence of the optical extinction to the HH 34 jet/counterjet system. We find evidence for extinction from a central, dense core surrounding the outflow source and from a more extended region in the foreground of the HH 34 counterjet.

2020 ◽  
Vol 642 ◽  
pp. A93
Author(s):  
Ward Homan ◽  
Emily Cannon ◽  
Miguel Montargès ◽  
Anita M. S. Richards ◽  
Tom J. Millar ◽  
...  

Cool evolved stars are known to be significant contributors to the enrichment of the interstellar medium through their dense and dusty stellar winds. High resolution observations of these outflows have shown them to possess high degrees of morphological complexity. We observed the asymptotic giant branch (AGB) star EP Aquarii with ALMA in band 6 and VLT/SPHERE/ZIMPOL in four filters the visible. Both instruments had an angular resolution of 0.025″. These are follow-up observations to the lower-resolution 2016 ALMA analysis of EP Aquarii, which revealed that its wind possesses a nearly face-on, spiral-harbouring equatorial density enhancement, with a nearly pole-on bi-conical outflow. At the base of the spiral, the SiO emission revealed a distinct emission void approximately 0.4″ to the west of the continuum brightness peak, which was proposed to be linked to the presence of a companion. The new ALMA data better resolve the inner wind and reveal that its morphology as observed in CO is consistent with hydrodynamical companion-induced perturbations. Assuming that photodissociation by the UV-field of the companion is responsible for the emission void in SiO, we deduced the spectral properties of the tentative companion from the size of the hole. We conclude that the most probable companion candidate is a white dwarf with a mass between 0.65 and 0.8 M⊙, though a solar-like companion could not be definitively excluded. The radial SiO emission shows periodic, low-amplitude perturbations. We tentatively propose that they could be the consequence of the interaction of the AGB wind with another much closer low-mass companion. The polarised SPHERE/ZIMPOL data show a circular signal surrounding the AGB star with a radius of ∼0.1″. Decreased signal along a PA of 138° suggests that the dust is confined to an inclined ring-like structure, consistent with the previously determined wind morphology.


Author(s):  
J. Quatacker ◽  
W. De Potter

Mucopolysaccharides have been demonstrated biochemically in catecholamine-containing subcellular particles in different rat, cat and ox tissues. As catecholamine-containing granules seem to arise from the Golgi apparatus and some also from the axoplasmic reticulum we examined wether carbohydrate macromolecules could be detected in the small and large dense core vesicles and in structures related to them. To this purpose superior cervical ganglia and irises from rabbit and cat and coeliac ganglia and their axons from dog were subjected to the chromaffin reaction to show the distribution of catecholamine-containing granules. Some material was also embedded in glycolmethacrylate (GMA) and stained with phosphotungstic acid (PTA) at low pH for the detection of carbohydrate macromolecules.The chromaffin reaction in the perikarya reveals mainly large dense core vesicles, but in the axon hillock, the axons and the terminals, the small dense core vesicles are more prominent. In the axons the small granules are sometimes seen inside a reticular network (fig. 1).


Author(s):  
M. Locke ◽  
J. T. McMahon

The fat body of insects has always been compared functionally to the liver of vertebrates. Both synthesize and store glycogen and lipid and are concerned with the formation of blood proteins. The comparison becomes even more apt with the discovery of microbodies and the localization of urate oxidase and catalase in insect fat body.The microbodies are oval to spherical bodies about 1μ across with a depression and dense core on one side. The core is made of coiled tubules together with dense material close to the depressed membrane. The tubules may appear loose or densely packed but always intertwined like liquid crystals, never straight as in solid crystals (Fig. 1). When fat body is reacted with diaminobenzidine free base and H2O2 at pH 9.0 to determine the distribution of catalase, electron microscopy shows the enzyme in the matrix of the microbodies (Fig. 2). The reaction is abolished by 3-amino-1, 2, 4-triazole, a competitive inhibitor of catalase. The fat body is the only tissue which consistantly reacts positively for urate oxidase. The reaction product is sharply localized in granules of about the same size and distribution as the microbodies. The reaction is inhibited by 2, 6, 8-trichloropurine, a competitive inhibitor of urate oxidase.


Author(s):  
Ralph Oralor ◽  
Pamela Lloyd ◽  
Satish Kumar ◽  
W. W. Adams

Small angle electron scattering (SAES) has been used to study structural features of up to several thousand angstroms in polymers, as well as in metals. SAES may be done either in (a) long camera mode by switching off the objective lens current or in (b) selected area diffraction mode. In the first case very high camera lengths (up to 7Ø meters on JEOL 1Ø ØCX) and high angular resolution can be obtained, while in the second case smaller camera lengths (approximately up to 3.6 meters on JEOL 1Ø ØCX) and lower angular resolution is obtainable. We conducted our SAES studies on JEOL 1ØØCX which can be switched to either mode with a push button as a standard feature.


Author(s):  
J.M.K. Wiezorek ◽  
H.L. Fraser

Conventional methods of convergent beam electron diffraction (CBED) use a fully converged probe focused on the specimen in the object plane resulting in the formation of a CBED pattern in the diffraction plane. Large angle CBED (LACBED) uses a converged but defocused probe resulting in the formation of ‘shadow images’ of the illuminated sample area in the diffraction plane. Hence, low-spatial resolution image information and high-angular resolution diffraction information are superimposed in LACBED patterns which enables the simultaneous observation of crystal defects and their effect on the diffraction pattern. In recent years LACBED has been used successfully for the investigation of a variety of crystal defects, such as stacking faults, interfaces and dislocations. In this paper the contrast from coherent precipitates and decorated dislocations in LACBED patterns has been investigated. Computer simulated LACBED contrast from decorated dislocations and coherent precipitates is compared with experimental observations.


2015 ◽  
Vol 71-72 ◽  
pp. 187-188
Author(s):  
A. Gallenne ◽  
A. Mérand ◽  
P. Kervella

1981 ◽  
Vol 42 (C5) ◽  
pp. C5-157-C5-162 ◽  
Author(s):  
H. Mizubayashi ◽  
S. Okuda
Keyword(s):  

1987 ◽  
Vol 26 (06) ◽  
pp. 248-252 ◽  
Author(s):  
M. J. van Eenige ◽  
F. C. Visser ◽  
A. J. P. Karreman ◽  
C. M. B. Duwel ◽  
G. Westera ◽  
...  

Optimal fitting of a myocardial time-activity curve is accomplished with a monoexponential plus a constant, resulting in three parameters: amplitude and half-time of the monoexponential and the constant. The aim of this study was to estimate the precision of the calculated parameters. The variability of the parameter values as a function of the acquisition time was studied in 11 patients with cardiac complaints. Of the three parameters the half-time value varied most strongly with the acquisition time. An acquisition time of 80 min was needed to keep the standard deviation of the half-time value within ±10%. To estimate the standard deviation of the half-time value as a function of the parameter values, of the noise content of the time-activity curve and of the acquisition time, a model experiment was used. In most cases the SD decreased by 50% if the acquisition time was increased from 60 to 90 min. A low amplitude/constant ratio and a high half-time value result in a high SD of the half-time value. Tables are presented to estimate the SD in a particular case.


Sign in / Sign up

Export Citation Format

Share Document