scholarly journals A DIN-RAIL BASED MODULAR DESIGN FOR CONTROLLING OBSERVATORIES AND TELESCOPES

Author(s):  
A. Pál ◽  
L. Mészáros

In this paper we describe a multi-functional electronics design suitable to implement versatile embedded control functionalities, especially to drive autonomous telescope systems. This system of ours is a daisy-chained series of electronics having a DIN-rail compatible form factor, where each of the modules support all of the functionalities related to inter-module communication, autonomous computing and supporting physical connection and drivers to external interfaces.

2021 ◽  
Vol 2021 ◽  
pp. 1-28
Author(s):  
Juan Sebastián Rodríguez ◽  
Andrés Yarce Botero ◽  
Diego Valle Lopera ◽  
Julián Gálvez- Serna ◽  
Francisco Botero

This article includes the phases of conceptualization and validation of a picosatellite prototype named Simple-2 for remote sensing activities using COTS (Commercial-Off-The-Shelf) components and the modular design methodology. To evaluate its performance and ensure the precision and accuracy of the measurements made by the satellite prototype, a methodology was designed and implemented for the characterization and qualification of CanSats (soda can satellites) through statistical tests and techniques of DoE (Design of Experiments) based on CubeSat aerospace standards and regulations, in the absence of official test procedures for these kinds of satellite form factor. For the above, two experimental units were used, and all the performance variables of the different satellite subsystems were discriminated. For the above, two experimental units were used, and all the performance variables of the different satellite subsystems were discriminated against. These were grouped according to the dependence of the treatments formulated in thermal and dynamic variables. For the tests of the first variables, a one-factor design was established using dependent samples on each of the treatments. Then, hypothesis tests were performed for equality of medians, using nonparametric analysis of the Kruskal-Wallis variance. Additionally, multivariate analysis of variance was carried out for nonparametric samples (nonparametric multivariate tests), and the application of post hoc multiple-range tests to identify the treatments that presented significant differences within a margin of acceptability. To know the dynamic response and ensure the structural integrity of the satellite module, shock, oscillation, and sinusoidal tests were applied through a shaker. Having applied the experimental methodology to the different units, the results of a real experiment are illustrated in which a high-altitude balloon was used through the application of nonparametric regression methods. This experiment’s interest measured thermodynamic variables and the concentration of pollutants in the stratosphere to corroborate the operating ranges planned in the above experiments using on-flight conditions and estimate the TLR (technology readiness level) of future prototypes.


Author(s):  
L. VENKATESAN ◽  
A.D. JANARTHANAN ◽  
S. GOWRISHANKAR ◽  
P.R. AARTHI ◽  
G.SARAVANA KUMAR

In this paper, modular design of embedded feedback controllers using the Field Programmable Gate Array (FPGA) technology is presented. To this end, a novel Distributed Arithmetic (DA)-based Proportional Integral Derivative (PID) controller algorithm is implemented and integrated into a digital feedback control system. The DA-based PID controller savings 80% hardware utilization to the multiplier-based scheme. It also offers good closed-loop performance while using less resource, resulting in cost reduction, high speed, and low power consumption, which is desirable in embedded control applications. The complete digital control system is built using commercial FPGAs to control a simple temperature loop.


Author(s):  
T. Geipel ◽  
W. Mader ◽  
P. Pirouz

Temperature affects both elastic and inelastic scattering of electrons in a crystal. The Debye-Waller factor, B, describes the influence of temperature on the elastic scattering of electrons, whereas the imaginary part of the (complex) atomic form factor, fc = fr + ifi, describes the influence of temperature on the inelastic scattering of electrons (i.e. absorption). In HRTEM simulations, two possible ways to include absorption are: (i) an approximate method in which absorption is described by a phenomenological constant, μ, i.e. fi; - μfr, with the real part of the atomic form factor, fr, obtained from Hartree-Fock calculations, (ii) a more accurate method in which the absorptive components, fi of the atomic form factor are explicitly calculated. In this contribution, the inclusion of both the Debye-Waller factor and absorption on HRTEM images of a (Oll)-oriented GaAs crystal are presented (using the EMS software.Fig. 1 shows the the amplitudes and phases of the dominant 111 beams as a function of the specimen thickness, t, for the cases when μ = 0 (i.e. no absorption, solid line) and μ = 0.1 (with absorption, dashed line).


1999 ◽  
Vol 78 (3) ◽  
pp. 113-116 ◽  
Keyword(s):  

1982 ◽  
Vol 43 (C7) ◽  
pp. C7-273-C7-278 ◽  
Author(s):  
P. Burlet ◽  
J. X. Boucherle ◽  
J. Rossat-Mignod ◽  
J. W. Cable ◽  
W. C. Koehler ◽  
...  

1982 ◽  
Vol 43 (C7) ◽  
pp. C7-263-C7-271 ◽  
Author(s):  
J. X. Boucherle ◽  
D. Ravot ◽  
J. Schweizer
Keyword(s):  

1982 ◽  
Vol 43 (C7) ◽  
pp. C7-253-C7-256
Author(s):  
H. Fuess ◽  
R. Müller ◽  
D. Schwabe ◽  
F. Tasset

Author(s):  
Kendall Scott Wills ◽  
Omar Diaz de Leon ◽  
Kartik Ramanujachar ◽  
Charles P. Todd

Abstract In the current generations of devices the die and its package are closely integrated to achieve desired performance and form factor. As a result, localization of continuity failures to either the die or the package is a challenging step in failure analysis of such devices. Time Domain Reflectometry [1] (TDR) is used to localize continuity failures. However the accuracy of measurement with TDR is inadequate for effective localization of the failsite. Additionally, this technique does not provide direct 3-Dimenstional information about the location of the defect. Super-conducting Quantum Interference Device (SQUID) Microscope is useful in localizing shorts in packages [2]. SQUID microscope can localize defects to within 5um in the X and Y directions and 35um in the Z direction. This accuracy is valuable in precise localization of the failsite within the die, package or the interfacial region in flipchip assemblies.


Sign in / Sign up

Export Citation Format

Share Document