scholarly journals Bioengineered tooth emulation systems for regenerative and pharmacological purposes

2021 ◽  
Vol 41 ◽  
pp. 502-516
Author(s):  
P Pagella ◽  
◽  
A Cordiale ◽  
GD Marconi ◽  
O Trubiani ◽  
...  

Genetic conditions, traumatic injuries, carious lesions and periodontal diseases are all responsible for dental pathologies. The current clinical approaches are based on the substitution of damaged dental tissues with inert materials, which, however, do not ensure full physiological recovery of the teeth. Different populations of dental mesenchymal stem cells have been isolated from dental tissues and several attempts have already been made at using these stem cells for the regeneration of human dental tissues. Despite encouraging progresses, dental regenerative therapies are very far from any clinical applications. This is tightly connected with the absence of proper platforms that would model and faithfully mimic human dental tissues in their complexity. Therefore, in the last decades, many efforts have been dedicated for the development of innovative systems capable of emulating human tooth physiology in vitro. This review focuses on the use of in vitro culture systems, such as bioreactors and “organ-on-a-chip” microfluidic devices, for the modelling of human dental tissues and their potential use for dental regeneration and drug testing.

2004 ◽  
Vol 83 (7) ◽  
pp. 523-528 ◽  
Author(s):  
M.T. Duailibi ◽  
S.E. Duailibi ◽  
C.S. Young ◽  
J.D. Bartlett ◽  
J.P. Vacanti ◽  
...  

The recent bioengineering of complex tooth structures from pig tooth bud tissues suggests the potential for the regeneration of mammalian dental tissues. We have improved tooth bioengineering methods by comparing the utility of cultured rat tooth bud cells obtained from three- to seven-day post-natal (dpn) rats for tooth-tissue-engineering applications. Cell-seeded biodegradable scaffolds were grown in the omenta of adult rat hosts for 12 wks, then harvested. Analyses of 12-week implant tissues demonstrated that dissociated 4-dpn rat tooth bud cells seeded for 1 hr onto PGA or PLGA scaffolds generated bioengineered tooth tissues most reliably. We conclude that tooth-tissue-engineering methods can be used to generate both pig and rat tooth tissues. Furthermore, our ability to bioengineer tooth structures from cultured tooth bud cells suggests that dental epithelial and mesenchymal stem cells can be maintained in vitro for at least 6 days.


2014 ◽  
Vol 39 (1) ◽  
pp. 94-103 ◽  
Author(s):  
Ayşegül Doğan ◽  
Selami Demirci ◽  
Fikrettin Şahin

2017 ◽  
Vol 65 (4) ◽  
pp. 359-367 ◽  
Author(s):  
Giulia Tarquinio DEMARCO ◽  
Laura Borges KIRSCHNICK ◽  
Luis Bayardo WATSON ◽  
Marcus Cristian MUNIZ CONDE ◽  
Flávio Fernando DEMARCO ◽  
...  

ABSTRACT Regenerative therapies have been widely developed in dentistry and it is important to incorporate dentists’ knowledge of these new therapies into the dental clinic routine. This study reviewed the literature on regenerative therapies and clinical applications. Tissue engineering has contributed to changes in the paradigm of restorative health sciences. Its pillars underpin the techniques of tissue and organ regeneration. Despite the majority of studies in this field being in vitro, a range of preclinical studies and methodologies has been formed using these principles and they are already being used on humans. The use of platelet-rich plasma and platelet-rich fibrin in surgery as natural scaffolds for the reestablishment of bone and periodontal tissue are often reported in the literature and clinical trials using this approach have shown promising results. Stem cells from autologous dental pulp have been successfully applied in bone tissue regeneration using natural collagen scaffold in humans. In addition, revascularization of the root canal already appears in the literature as a promising alternative to apexification. The principle behind this therapy is the use of the blood clot as a scaffold and the migration of stem cells of the apical papilla to regenerate the dental pulp organ. Final considerations: Although still in the early stages, regenerative therapies can now be used in dental practice. Knowledge of the principles governing these therapies should be understood by the dentist for use in clinical practice.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengyue Li ◽  
Qiang Wang ◽  
Qi Han ◽  
Jiameng Wu ◽  
Hongfan Zhu ◽  
...  

IntroductionThis work aimed to reveal the crucial role of Nell-1 in the angiogenic differentiation of human dental pulp stem cells (DPSCs) alone or co-cultured with human umbilical vein endothelial cell (HUVECs) in vitro and whether this molecule is involved in the pulp exposure model in vivo.MethodsImmunofluorescence was conducted to ascertain the location of Nell-1 on DPSCs, HUVECs, and normal rat dental tissues. RT-PCR, Western blot, and ELISA were performed to observe the expression levels of angiogenic markers and determine the angiogenic differentiation of Nell-1 on DPSCs alone or co-cultured with HUVECs, as well as in vitro tube formation assay. Blood vessel number for all groups was observed and compared using immunohistochemistry by establishing a rat pulp exposure model.ResultsNell-1 is highly expressed in the nucleus of DPSCs and HUVECs and is co-expressed with angiogenic markers in normal rat pulp tissues. Hence, Nell-1 can promote the angiogenic marker expression in DPSCs alone and co-cultured with other cells and can enhance angiogenesis in vitro as well as in the pulp exposure model.ConclusionNell-1 may play a positive role in the angiogenic differentiation of DPSCs.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Isabel Benjumeda Wijnhoven ◽  
Raúl Vallejos ◽  
Juan F. Santibanez ◽  
Carola Millán ◽  
Juan F. Vivanco

Abstract The combination of biomaterials and stem cells for clinical applications constitute a great challenge in bone tissue engineering. Hence, cellular networks derived from cells-biomaterials crosstalk have a profound influence on cell behaviour and communication, preceding proliferation and differentiation. The purpose of this study was to investigate in vitro cellular networks derived from human gingival mesenchymal stem cells (hGMSCs) and calcium phosphate (CaP) bioceramic interaction. Biological performance of CaP bioceramic and hGMSCs interaction was evaluated through cell adhesion and distribution, cellular proliferation, and potential osteogenic differentiation, at three different times: 5 h, 1 week and 4 weeks. Results confirmed that hGMSCs met the required MSCs criteria while displaying osteogenic differentiaton capacities. We found a significant increase of cellular numbers and proliferation levels. Also, protein and mRNA OPN expression were upregulated in cells cultured with CaP bioceramic by day 21, suggesting an osteoinductible effect of the CaP bioceramic on hGMSCs. Remarkably, CaP bioceramic aggregations were obtained through hGMSCs bridges, suggesting the in vitro potential of macrostructures formation. We conclude that hGMSCs and CaP bioceramics with micro and macropores support hGMSC adhesion, proliferation and osteogenic differentiation. Our results suggest that investigations focused on the interface cells-biomaterials are essential for bone tissue regenerative therapies.


2020 ◽  
Vol 21 (11) ◽  
pp. 4031 ◽  
Author(s):  
Juliana Baranova ◽  
Dominik Büchner ◽  
Werner Götz ◽  
Margit Schulze ◽  
Edda Tobiasch

With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.


2021 ◽  
Vol 28 ◽  
pp. 7-14
Author(s):  
Damiën van Berlo ◽  
Vivian V.T. Nguyen ◽  
Vasiliki Gkouzioti ◽  
Kirsten Leineweber ◽  
Marianne C. Verhaar ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Nazmul Haque ◽  
Mohammad Tariqur Rahman ◽  
Noor Hayaty Abu Kasim ◽  
Aied Mohammed Alabsi

Cell-based regenerative therapies, based onin vitropropagation of stem cells, offer tremendous hope to many individuals suffering from degenerative diseases that were previously deemed untreatable. Due to the self-renewal capacity, multilineage potential, and immunosuppressive property, mesenchymal stem cells (MSCs) are considered as an attractive source of stem cells for regenerative therapies. However, poor growth kinetics, early senescence, and genetic instability duringin vitroexpansion and poor engraftment after transplantation are considered to be among the major disadvantages of MSC-based regenerative therapies. A number of complex inter- and intracellular interactive signaling systems control growth, multiplication, and differentiation of MSCs in their niche. Common laboratory conditions for stem cell culture involve ambient O2concentration (20%) in contrast to their niche where they usually reside in 2–9% O2. Notably, O2plays an important role in maintaining stem cell fate in terms of proliferation and differentiation, by regulating hypoxia-inducible factor-1 (HIF-1) mediated expression of different genes. This paper aims to describe and compare the role of normoxia (20% O2) and hypoxia (2–9% O2) on the biology of MSCs. Finally it is concluded that a hypoxic environment can greatly improve growth kinetics, genetic stability, and expression of chemokine receptors duringin vitroexpansion and eventually can increase efficiency of MSC-based regenerative therapies.


2014 ◽  
Vol 34 (4) ◽  
pp. 1004-1012 ◽  
Author(s):  
WEN ZHANG ◽  
XIAOLEI ZHANG ◽  
JUNQI LING ◽  
WEI LIU ◽  
XINCHUN ZHANG ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document