scholarly journals CFD Simulation of Non-Premixed Light Duty Dual Fuel (Diesel + Natural Gas) Combustion Engine and Evaluating Different Type of Pollutant Emissions

Author(s):  
Anil Sahu
2014 ◽  
Vol 45 ◽  
pp. 929-937 ◽  
Author(s):  
Enrico Mattarelli ◽  
Carlo Alberto Rinaldini ◽  
Valeri I. Golovitchev

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4307
Author(s):  
Roberta De Robbio ◽  
Maria Cristina Cameretti ◽  
Ezio Mancaruso ◽  
Raffaele Tuccillo ◽  
Bianca Maria Vaglieco

Dual fuel engines induce benefits in terms of pollutant emissions of PM and NOx together with carbon dioxide reduction and being powered by natural gas (mainly methane) characterized by a low C/H ratio. Therefore, using natural gas (NG) in diesel engines can be a viable solution to reevaluate this type of engine and to prevent its disappearance from the automotive market, as it is a well-established technology in both energy and transportation fields. It is characterized by high performance and reliability. Nevertheless, further improvements are needed in terms of the optimization of combustion development, a more efficient oxidation, and a more efficient exploitation of gaseous fuel energy. To this aim, in this work, a CFD numerical methodology is described to simulate the processes that characterize combustion in a light-duty diesel engine in dual fuel mode by analyzing the effects of the changes in engine speed on the interaction between fluid-dynamics and chemistry as well as when the diesel/natural gas ratio changes at constant injected diesel amount. With the aid of experimental data obtained at the engine test bench on an optically accessible research engine, models of a 3D code, i.e., KIVA-3V, were validated. The ability to view images of OH distribution inside the cylinder allowed us to better model the complex combustion phenomenon of two fuels with very different burning characteristics. The numerical results also defined the importance of this free radical that characterizes the areas with the greatest combustion activity.


2009 ◽  
Vol 64 (5-6) ◽  
pp. 393-398 ◽  
Author(s):  
Grzegorz Litak ◽  
Michał Gęca ◽  
Bao-Feng Yao ◽  
Guo-Xiu Li

Fluctuations in a combustion process of natural gas in the internal spark ignition engine have been investigated. We measured pressure of the cyclic combustion and expressed its cyclic oscillations in terms of indicated mean effective pressure per cycle. By applying the statistical and multifractal analysis to the corresponding time series we show the considerable changes in engine dynamics for a different equivalence ratio decreases from 0.781 to very lean conditions.


Author(s):  
Yu. P. Yarmolchick

The combustion of hydrocarbon fuels in the chambers of heat generating plants is one of the main sources of pollutant emissions. Environmental standards and rules that limit emissions are becoming more stringent and their implementation requires the introduction of advanced technologies and equipment. The main device in combustion systems are blow burners, the design of which largely determines the level of emission. The article considers factors that intensify the formation of normalized pollutants, provides global chemical reactions, various types of mechanisms, and kinetic schemes. Based on the analysis of modern methods for reducing harmful emissions, the most effective design solutions for mixing devices, nozzles and systems for distributing the flow of fuel and air supplied to combustion are determined. A comparative analysis of the methods and conditions for determining the emission class of the burner device is carried out depending on the selected units of measure, the coefficient of excess air (oxygen concentration in flue gases), air humidity and the initial composition of natural gas using examples of EU and EAC standards. The methodology for calculating the emissions of nitrogen oxides depending on the measurement conditions is given. The conversion factors for the values of pollutant emissions from the accepted units in the EU (mg/(kW×h)) into the units indicated according to the EAC environmental rules (mg/m3) taking into account the respectively normalized coefficient of excess air are obtained. As a result of the calculations, the types of burners were determined by emission classes corresponding to the applicable environmental standards and rules in the Republic of Belarus, depending on the heat output of the boiler plants.


2017 ◽  
Vol 10 (2) ◽  
pp. 483-500 ◽  
Author(s):  
Ivan Taritas ◽  
Darko Kozarac ◽  
Momir Sjeric ◽  
Miguel Sierra Aznar ◽  
David Vuilleumier ◽  
...  

2019 ◽  
Vol 6 (2) ◽  
pp. 56-63
Author(s):  
L. D. Pylypiv ◽  
І. І. Maslanych

There are investigated the influence of operating pressures in the gas supply system on the level of such energy indicators as efficiency, gas flow and gas overrun by gas equipment in residential buildings. There is established a relationship between the values of operating pressures in the gas supply system and the gas consumption level of household appliances. The causes of insufficient pressure in the gas networks of settlements are analyzed in the article. There is also developed an algorithm for calculating the change in the efficiency of gas appliances depending on the operational parameters of the gas network. It has been found that the most efficient operation of gas appliances is observed at an overpressure at the inlet of gas appliances of about 1200 Pa.To ensure the required quality of natural gas combustion among consumers and minimize gas consumption there are justified the following measures in the article: coordinating a domestic regulatory framework for assessing the quality of natural gas with international norms and standards; improving the preparation of gas coming from local wells before supplying it to gas distribution networks; auditing low pressure gas pipelines and reconstructing areas affected by corrosion; ensuring standard gas pressure in the network for the normal operation of domestic gas appliances; stating quality indicators of natural gas combustion by gas sales organizations.


Sign in / Sign up

Export Citation Format

Share Document